




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年苏教版高一数学下册阶段测试试卷698考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共7题,共14分)1、函数的定义域是()
A.[0;2)
B.[0.1)∪(1;2)
C.(1;2)
D.[0;1)
2、如图,长方体ABCD-A1B1C1D1中,∠DAD1=45°,∠CDC1=30°,那么异面直线AD1与DC1所成角的余弦值是()
A.
B.
C.
D.
3、若则3x+9x的值为()A.6B.3C.D.4、已知函数则等于()A.B.C.D.5、在数列{an}中,若an+1=a1=1,则a6=()A.13B.C.11D.6、已知函数则=()A.B.eC.D.﹣e7、数的单调递增区间为()A.(-∞,1)B.(2,+∞)C.(-∞,)D.(+∞)评卷人得分二、填空题(共5题,共10分)8、一组数1,3,x的方差是则x=____.9、【题文】函数的定义域是____10、【题文】已知函数在区间上为增函数,那么的取值范围是.____11、【题文】圆心为且与直线相切的圆的方程是____.12、已知函f(x)=则f(f())=____评卷人得分三、作图题(共6题,共12分)13、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.14、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.
15、请画出如图几何体的三视图.
16、某潜艇为躲避反潜飞机的侦查,紧急下潜50m后,又以15km/h的速度,沿北偏东45°前行5min,又以10km/h的速度,沿北偏东60°前行8min,最后摆脱了反潜飞机的侦查.试画出潜艇整个过程的位移示意图.17、绘制以下算法对应的程序框图:
第一步;输入变量x;
第二步,根据函数f(x)=
对变量y赋值;使y=f(x);
第三步,输出变量y的值.18、已知简单组合体如图;试画出它的三视图(尺寸不做严格要求)
评卷人得分四、证明题(共4题,共40分)19、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.20、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.
(1)求证:E为的中点;
(2)若CF=3,DE•EF=,求EF的长.21、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.22、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分五、计算题(共4题,共16分)23、解答下列各题:(1)计算:
(2)解分式方程:.24、己知方程x2-x-1=0的根是方程x6-px2+q=0的根,则p=____,q=____.25、在△ABC中,AB=AC,∠A=45°,AC的垂直平分线分别交AB、AC于D、E两点,连接CD,如果AD=1,求:tan∠BCD的值.26、已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0}且A∩B={x|0<x≤2},A∪B={x|x>﹣2},求a、b的值.评卷人得分六、综合题(共3题,共6分)27、已知函数y1=px+q和y2=ax2+bx+c的图象交于A(1,-1)和B(3,1)两点,抛物线y2与x轴交点的横坐标为x1,x2,且|x1-x2|=2.
(1)求这两个函数的解析式;
(2)设y2与y轴交点为C,求△ABC的面积.28、设直线kx+(k+1)y-1=0与坐标轴所围成的直角三角形的面积为Sk,则S1+S2++S2009=____.29、若反比例函数y=与一次函数y=kx+b的图象都经过一点A(a,2),另有一点B(2,0)在一次函数y=kx+b的图象上.
(1)写出点A的坐标;
(2)求一次函数y=kx+b的解析式;
(3)过点A作x轴的平行线,过点O作AB的平行线,两线交于点P,求点P的坐标.参考答案一、选择题(共7题,共14分)1、B【分析】
要使原函数有意义,则解得:0≤x<2,且x≠1.
所以原函数的定义域为[0;1)∪(1,2).
故选B.
【解析】【答案】给出的函数解析式含有分式;分子含有根式,需要根式内部的代数式大于等于0,分母含有对数式,需要对数式的真数大于0且不等于1,最后取交集.
2、A【分析】
如图。
设AD=1,则D1D=1,C1D=2,DC1=BC=1
将D1A平移到C1B,则∠DC1B是异面直线AD1与DC1所成角。
BD=2,C1B=DC1=2
cos∠DC1B==.
故选:A.
【解析】【答案】先将D1A平移到C1B,得到的锐角∠DC1B就是异面直线所成的角,在三角形DC1B中再利用余弦定理求出此角即可.
3、A【分析】试题分析:给方程两边同乘得即化为指数式得所以故选A.考点:对数的基本运算及指数式与对数式的互化【解析】【答案】A4、D【分析】【解答】分段函数的函数值计算要注意自变量的取值范围,5、D【分析】【解答】解:∵an+1=a1=1;
∴a2==a3==a4==a5==a6==
故选D.
【分析】根据首项a1和递推公式,将a1代入可求a2,将a2代入可求a3,依此类推,可求出a6.6、A【分析】【解答】解:∵
∴
∴
故选A
【分析】根据解析式,先求再求7、A【分析】【解答】由得:令
因为
所以的单调递增区间为(-∞;1)。选A。
【分析】判断复合函数的单调性,只需要满足四个字:同增异减,但一定要注意先求函数的定义域。本题易错的地方是:忘记求定义域而导致选错误答案C。二、填空题(共5题,共10分)8、略
【分析】
依题意得:
所以方差s2=[(1-)2+(3-)2+(x-)2]=.
解之;得:x=2
故答案为:2.
【解析】【答案】本题可运用求平均数公式:及运用方差的公式列出方差的等式;从而求得x.
9、略
【分析】【解析】
试题分析:要使函数有意义,需要所以定义域是
考点:本小题主要考查函数的定义域.
点评:求具体函数的定义域只需使函数有意义即可,结果要写成集合或区间的形式.【解析】【答案】10、略
【分析】【解析】略【解析】【答案】____11、略
【分析】【解析】略【解析】【答案】12、【分析】【解答】解:由分段函数可知f()=
f(f())=f(﹣2)=.
故答案为:.
【分析】利用分段函数直接进行求值即可.三、作图题(共6题,共12分)13、略
【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.
∵点A与点A′关于CD对称;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:铺设管道的最省费用为10000元.14、解:程序框图如下:
【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.15、解:如图所示:
【分析】【分析】由几何体是圆柱上面放一个圆锥,从正面,左面,上面看几何体分别得到的图形分别是长方形上边加一个三角形,长方形上边加一个三角形,圆加一点.16、解:由题意作示意图如下;
【分析】【分析】由题意作示意图。17、解:程序框图如下:
【分析】【分析】该函数是分段函数,当x取不同范围内的值时,函数解析式不同,因此当给出一个自变量x的值时,必须先判断x的范围,然后确定利用哪一段的解析式求函数值,因为函数解析式分了三段,所以判断框需要两个,即进行两次判断,于是,即可画出相应的程序框图.18、
解:几何体的三视图为:
【分析】【分析】利用三视图的作法,画出三视图即可.四、证明题(共4题,共40分)19、略
【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
从而四边形OBFC为平行四边形;
所以BM=MC.20、略
【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE
OA=OE=>∠OAE=∠OEA
DE切圆O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
⇒OE∥AD
=>E为的中点.
(2)解:连CE;则∠AEC=90°,设圆O的半径为x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圆O于E=>△FCE∽△FEA
∴,
∴
即DE•EF=AD•CF
DE•EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC•FA=3x(3+2)=15
∴EF=21、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.22、略
【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;
由图知:∠FDC是△ACD的一个外角;
则有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四边形ABCD是圆的内接四边形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分别是∠AFB、∠AED的角平分线;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)连接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可证得∠NEX=∠MEX;
故FX、EX分别平分∠MFN与∠MEN.五、计算题(共4题,共16分)23、略
【分析】【分析】(1)本题涉及零指数幂;负指数幂、二次根式化简、绝对值4个考点.在计算时;需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
(2)根据解分式方程的步骤计算:①去分母;②求出整式方程的解;③检验;④得出结论.【解析】【解答】解:(1)
=2-1+2+-1
=3;
(2)原方程可变形为:=2;
去分母得:1-x=2(x-3);
去括号移项得:3x=7;
系数化为1得:x=;
经检验,x=是原方程的根.24、略
【分析】【分析】根据韦达定理求得设方程x2-x-1=0的二根分别为x1、x2,由韦达定理,得x1+x2=1,x1•x2=-1;然后将x1、x2分别代入方程x6-px2+q=0列出方程组,再通过解方程组求得pq的值.【解析】【解答】解:设方程x2-x-1=0的二根分别为x1、x2,由韦达定理,得x1+x2=1,x1•x2=-1;则。
x12+x22=(x1+x2)2-2x1•x2=1+2=3;
(x12)2+(x22)2=(x12+x22)2-2x12•x22=7.
将x1、x2分别代入方程x6-px2+q=0;得。
x16-px12+q=0①
x26-px22+q=0②
①-②;得。
(x16-x26)-p(x12-x22)=0;
【(x12)3-(x22)3】-p(x12-x22)=0;
(x12-x22)【(x12)2+(x22)2+x12•x22】-p(x12-x22)=0;
由于x1≠x2,则x12-x22≠0;所以化简,得。
【(x12)2+(x22)2+x12•x22】-p=0;
则p=(x12)2+(x22)2+(x1•x2)2=7+(-1)2=8;
①+②;得。
(x16+x26)-8(x12+x22)+2q=0;
【(x12)3+(x22)3】-24+2q=0;
∴(x12+x22)【(x12)2+(x22)2-x12•x22】-24+2q=0;
∴3【(x12)2+(x22)2-(x1•x2)2】-24+2q=0;
∴3(7-1)-24+2q=0;解得。
q=3;
综上所述;p=8,q=3.
故答案是:8、3.25、略
【分析】【分析】首先利用线段垂直平分线的性质得出∠A=∠ACD⇒AD=DC=1;
根据AB=AC求出BD长即可求解.【解析】【解答】解:∵DE垂直平分AC;
∴AD=CD;∠A=∠ACD=45°;
∴∠ADC=∠BDC=90°.
∵AD=CD=1;
∴AC=AB=;
.
在直角△BCD中;
.26、解:A={x|﹣2<x<﹣1或x>0},设B=[x1,x2],由A∩B={x|0<x≤2},知x2=2,且﹣1≤x1≤0,①由A∪B={x|x>﹣2},知﹣2≤x1≤﹣1.②由①②知x1=﹣1,x2=2,∴a=﹣(x1+x2)=﹣1,b=x1x2=﹣2,答:a=﹣1,b=﹣2.【分析】【分析】根据题意,设B=[x1,x2],由A∩B={x|0<x≤2},A∪B={x|x>﹣2},分析可得x1,x2的值,即B;进而可得a、b的值.六、综合题(共3题,共6分)27、略
【分析】【分析】(1)将A、B两点代入函数y1=px+q中,可求函数解析式,将A、B代入y2=ax2+bx+c中,再利用根与系数关系,列方程组求y2的函数关系式;
(2)根据A、B、C三点坐标,利用组合图形求三角形的面积.【解析】【解答】解:(1)将A、B两点坐标代入函数y1=px+q中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育行业市场营销简约方案
- 小学预防近视
- 大型活动策划与管理
- 护理差错与防范
- 抗凝药物注射规范
- 教师沟通技巧培训
- 统编版(2024)语文一年级下册期末综合素质测评一(含答案)
- 实体检测钢筋扫描培训
- 第四单元 旋转、平移和轴对称评估检测题( B 卷)单元测试(无答案)三年级下册数学西师大版
- 提高输液患者健康教育知晓率
- 2024年新人教PEP版三年级上册英语 Unit 4 Reading time教学课件
- 2024天津中考数学二轮重难题型专题训练 题型七 第24题平面直角坐标系下的图形变化 (含答案)
- 跌倒坠床应急演练
- 2024年保密知识测试试题库(完整版)
- 2024年计算机软考(高级)系统架构设计师考试题库大全(含真题等)
- 家庭教育指导实操
- 小题压轴题专练23-立体几何(动点问题)-2022届高三数学一轮复习
- 物理学简明教程马文蔚等高教出版社
- SY-T 6966-2023 输油气管道工程安全仪表系统设计规范
- 110KV变电站继电保护设计毕业设计论文
- 春天就是我童声合唱谱
评论
0/150
提交评论