![2025年浙科版高一数学下册阶段测试试卷_第1页](http://file4.renrendoc.com/view11/M01/08/0A/wKhkGWeZud2ABUWpAADljqKUafg041.jpg)
![2025年浙科版高一数学下册阶段测试试卷_第2页](http://file4.renrendoc.com/view11/M01/08/0A/wKhkGWeZud2ABUWpAADljqKUafg0412.jpg)
![2025年浙科版高一数学下册阶段测试试卷_第3页](http://file4.renrendoc.com/view11/M01/08/0A/wKhkGWeZud2ABUWpAADljqKUafg0413.jpg)
![2025年浙科版高一数学下册阶段测试试卷_第4页](http://file4.renrendoc.com/view11/M01/08/0A/wKhkGWeZud2ABUWpAADljqKUafg0414.jpg)
![2025年浙科版高一数学下册阶段测试试卷_第5页](http://file4.renrendoc.com/view11/M01/08/0A/wKhkGWeZud2ABUWpAADljqKUafg0415.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年浙科版高一数学下册阶段测试试卷775考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、设A、B是两个非空集合,定义A×B={x|x∈A∪B且x∉A∩B},已知A={x|y=},B={y|y=2x;x>0},则A×B=()
A.[0;1]∪(2,+∞)
B.[0;1)∪(2,+∞)
C.[0;1]
D.[0;2]
2、圆上的点到直线的距离最大值是()A.2B.C.D.3、【题文】若函数是奇函数,则=()A.1B.0C.2D.-14、一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率为()A.B.C.D.5、已知e是自然对数的底数,函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,则a+b=()A.1B.2C.3D.46、直线l1:x+ay+3=0和直线l2:(a-2)x+3y+a=0互相平行,则a的值为()A.-1或3B.-3或1C.-1D.-3评卷人得分二、填空题(共7题,共14分)7、设函数则方程x2f(x-1)=-4的解为____.8、设函数若用表示不超过实数的最大整数,则函数的值域为_________________.9、在中,若则的面积是____.10、【题文】已知
则的最大值等于____.11、【题文】高为5m和3m的两根旗杆竖在水平地面上,且相距10m,如果把两旗杆底部的坐标分别确定为A(-5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.12、已知f(x)=xex,g(x)=﹣(x+1)2+a,若∃x1,x2∈R,使得f(x2)≤g(x1)成立,则实数a的取值范围是____.13、已知点P(x,y)在经过两点A(3,0),B(1,1)的直线上,那么2x+4y的最小值是______.评卷人得分三、计算题(共8题,共16分)14、在Rt△ABC中,∠C=90°,c=8,sinA=,则b=____.15、已知x+y=x-1+y-1≠0,则xy=____.16、如果从数字1、2、3、4中,任意取出两个数字组成一个两位数,那么这个两位数是奇数的概率是____.17、不论实数k为何值,直线(2k+1)x+(1-k)y+7-k=0恒经过的定点坐标是____.18、(模拟改编)如图;在△ABC中,∠B=36°,D为BC上的一点,AB=AC=BD=1.
(1)求DC的长;
(2)利用此图,求sin18°的精确值.19、(1)计算:()0+︳1-︳-()2007()2008-(-1)-3
(2)先化简,再求值(1-)÷其中x=4.20、己知方程x2-x-1=0的根是方程x6-px2+q=0的根,则p=____,q=____.21、化简:.评卷人得分四、证明题(共4题,共24分)22、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.23、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.24、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.25、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.评卷人得分五、作图题(共4题,共32分)26、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.27、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.
28、某潜艇为躲避反潜飞机的侦查,紧急下潜50m后,又以15km/h的速度,沿北偏东45°前行5min,又以10km/h的速度,沿北偏东60°前行8min,最后摆脱了反潜飞机的侦查.试画出潜艇整个过程的位移示意图.29、绘制以下算法对应的程序框图:
第一步;输入变量x;
第二步,根据函数f(x)=
对变量y赋值;使y=f(x);
第三步,输出变量y的值.评卷人得分六、综合题(共3题,共18分)30、如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=;OP=2.
(1)当∠MPN旋转30°(即∠OPM=30°)时;求点N移动的距离;
(2)求证:△OPN∽△PMN;
(3)写出y与x之间的关系式;
(4)试写出S随x变化的函数关系式,并确定S的取值范围.31、如图,已知:⊙O1与⊙O2外切于点O,以直线O1O2为x轴,点O为坐标原点,建立直角坐标系,直线AB切⊙O1于点B,切⊙O2于点A,交y轴于点C(0,2),交x轴于点M.BO的延长线交⊙O2于点D;且OB:OD=1:3.
(1)求⊙O2半径的长;
(2)求线段AB的解析式;
(3)在直线AB上是否存在点P,使△MO2P与△MOB相似?若存在,求出点P的坐标与此时k=的值,若不存在,说明理由.32、数学课上;老师提出:
如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为xC、xD,点H的纵坐标为yH.
同学发现两个结论:
①S△CMD:S梯形ABMC=2:3②数值相等关系:xC•xD=-yH
(1)请你验证结论①和结论②成立;
(2)请你研究:如果上述框中的条件“A的坐标(1;0)”改为“A的坐标(t,0)(t>0)”,其他条件不变,结论①是否仍成立(请说明理由);
(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,又将条件“y=x2”改为“y=ax2(a>0)”,其他条件不变,那么xC、xD与yH有怎样的数值关系?(写出结果并说明理由)参考答案一、选择题(共6题,共12分)1、A【分析】
∵集合A;B是非空集合;定义A×B={x|x∈A∪B且x∉A∩B};
A={x|y=}={x|0≤x≤2}
B={y|y=2x;x>0}={y|y>1}
∴A∪B=[0;+∞),A∩B=(1,2]
因此A×B=[0;1]∪(2,+∞).
故选A.
【解析】【答案】根据根式有意义的条件;分别求出结合A和B,然后根据新定义A×B={x|x∈A∪B且x∉A∩B},进行求解.
2、B【分析】【解析】试题分析:圆化为其圆心半径直线化为过圆心作垂线垂直于直线垂足为E,延长垂线交圆于点F,则EF为最大距离。因为圆心到直线的距离所以考点:圆的标准方程;点到直线的距离公式。【解析】【答案】B3、A【分析】【解析】
试题分析:因为函数是奇函数,所以
考点:函数的奇偶性。
点评:熟记奇函数的性质:若是奇函数,且x=0有意义,则f(0)一定为0.【解析】【答案】A4、A【分析】【解答】现从袋中取出1球;然后放回袋中再取出一球,共有4种结果(红,红)(红,白)(白,红)(白,白)
记“取出的两个球同色”为事件A;则A包含的结果有(白,白)(红,红)2种结果。
由古典概率的计算公式可得P(A)=
故选:A.
【分析】分别求从袋中取出1球,然后放回袋中再取出一球,结果;取出的两个球同色结果,代入概率计算公式可求5、B【分析】【解答】解:由f(x)=ex+x﹣2=0得ex=2﹣x;
由g(x)=lnx+x﹣2=0得lnx=2﹣x;
作出函数y=ex;y=lnx,y=2﹣x的图象如图:
∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b;
∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b;
y=ex;y=lnx,互为反函数,图象关于y=x对称;
可得a+b=2.
故选:B.
【分析】根据函数与方程之间的关系转化为函数y=ex与y=2﹣x,y=lnx与y=2﹣x交点的横坐标,利用数形结合进行比较即可.6、C【分析】解:由a(a-2)-3=0;解得a=3或-1.
经过验证可得:a=3时两条直线重合;舍去.
∴a=-1.
故选:C.
由a(a-2)-3=0;解得a.经过验证即可得出.
本题考查了直线相互平行与斜率截距之间的关系,考查了推理能力与计算能力,属于基础题.【解析】【答案】C二、填空题(共7题,共14分)7、略
【分析】
由题意,解得x=-2;
故答案为:-2
【解析】【答案】由题意,从而可得结论.
8、略
【分析】因为化简故值域为{-1,0}【解析】【答案】9、略
【分析】余弦定理:【解析】【答案】10、略
【分析】【解析】
试题分析:设则所以
考点:分段函数【解析】【答案】211、略
【分析】【解析】设P(x,y),依题意有化简得P点轨迹方程为4x2+4y2-85x+100=0.【解析】【答案】4x2+4y2-85x+100=012、a≥【分析】【解答】解:∃x1,x2∈R,使得f(x2)≤g(x1)成立,等价于f(x)min≤g(x)max;
f′(x)=ex+xex=(1+x)ex;
当x<﹣1时;f′(x)<0,f(x)递减,当x>﹣1时,f′(x)>0,f(x)递增;
所以当x=﹣1时,f(x)取得最小值f(x)min=f(﹣1)=﹣
当x=﹣1时g(x)取得最大值为g(x)max=g(﹣1)=a;
所以﹣≤a,即实数a的取值范围是a≥.
故答案为:a≥.
【分析】∃x1,x2∈R,使得f(x2)≤g(x1)成立,等价于f(x)min≤g(x)max,利用导数可求得f(x)的最小值,根据二次函数的性质可求得g(x)的最大值,代入上述不等式即可求得答案.13、略
【分析】解:由题意知。
点P(x;y)在经过两点A(3,0),B(1,1)的直线上;
∴x+2y=3
2x+4y
=.
∴2x+4y的最小值是4.
故答案为:.
由题意知2x+4y=.由此可知2x+4y的最小值.
本题考查不等式的性质和应用,解题时要认真审题,仔细解答,解答关键是利用基本不等式求出最值.【解析】三、计算题(共8题,共16分)14、略
【分析】【分析】由已知,可求得a=2,然后,根据勾股定理,即可求出b的值.【解析】【解答】解:∵∠C=90°,c=8,sinA=;
∴=;
∴a=2;
∴b==;
故答案为:.15、略
【分析】【分析】先把原式化为x+y=+=的形式,再根据等式的性质求出xy的值即可.【解析】【解答】解:∵x+y=x-1+y-1≠0;
∴x+y=+=;
∴xy=1.
故答案为:1.16、略
【分析】【分析】列表列举出所有情况,看两位数是偶数的情况数占总情况数的多少即可解答.【解析】【解答】解:列表如下。12341121314221232433132344414243共有12种等可能的结果,其中是奇数的有6种,概率为=.
故答案为.17、略
【分析】【分析】因为不论实数k为何值,直线(2k+1)x+(1-k)y+7-k=0恒经过一定点,可设k为任意两实数(-,1除外),组成方程组求出x,y的值即可.【解析】【解答】解:①特殊值法:设k1=2,k2=0,代入函数关系式得:
解得:.
②分离参数法:由(2k+1)x+(1-k)y+7-k=0;
化简得k(2x-y-1)+x+y+7=0,无论k取何值,只要成立;则肯定符合直线方程;
解得:.
故直线经过的定点坐标是(-2,-5).18、略
【分析】【分析】(1)利用已知条件可以证明△ADC∽△BAC;再利用其对应边成比例即可求出CD的长.
(2)作AD的高,可将所求角的值转化在直角三角形中求出.【解析】【解答】解:(1)∵∠B=36°;AB=AC=BD=1;
∴∠C=36°;∠BDA=∠BAD=72°,∠DAC=36°;
∴∠DAC=∠B;∠C=∠C;
∴△ADC∽△BAC;
∴=;
即DC×(DC+1)=1;
∴DC1=,DC2=(舍去);
∴DC=;
(2)过点B作BE⊥AD,交AD于点E,
∵AB=BD=1;
∴∠ABE=18°,AE=DE=AD
∵∠DAC=∠C;
∴DC=AD=2DE=;
∴sin18°==.19、略
【分析】【分析】(1)求出根据零指数;绝对值性质、积的乘方和幂的乘方分别求出每一个式子的值;代入求出即可.
(2)根据分式的加减法则先计算括号里面的减法,同时把除法变成乘法,进行约分,再代入求出即可.【解析】【解答】解:(1)原式=1+-1-(+1)×1-(-1);
=1+-1--1+1;
=0.
(2)原式=[-]×;
=×;
=;
当x=4时;
原式=;
=.20、略
【分析】【分析】根据韦达定理求得设方程x2-x-1=0的二根分别为x1、x2,由韦达定理,得x1+x2=1,x1•x2=-1;然后将x1、x2分别代入方程x6-px2+q=0列出方程组,再通过解方程组求得pq的值.【解析】【解答】解:设方程x2-x-1=0的二根分别为x1、x2,由韦达定理,得x1+x2=1,x1•x2=-1;则。
x12+x22=(x1+x2)2-2x1•x2=1+2=3;
(x12)2+(x22)2=(x12+x22)2-2x12•x22=7.
将x1、x2分别代入方程x6-px2+q=0;得。
x16-px12+q=0①
x26-px22+q=0②
①-②;得。
(x16-x26)-p(x12-x22)=0;
【(x12)3-(x22)3】-p(x12-x22)=0;
(x12-x22)【(x12)2+(x22)2+x12•x22】-p(x12-x22)=0;
由于x1≠x2,则x12-x22≠0;所以化简,得。
【(x12)2+(x22)2+x12•x22】-p=0;
则p=(x12)2+(x22)2+(x1•x2)2=7+(-1)2=8;
①+②;得。
(x16+x26)-8(x12+x22)+2q=0;
【(x12)3+(x22)3】-24+2q=0;
∴(x12+x22)【(x12)2+(x22)2-x12•x22】-24+2q=0;
∴3【(x12)2+(x22)2-(x1•x2)2】-24+2q=0;
∴3(7-1)-24+2q=0;解得。
q=3;
综上所述;p=8,q=3.
故答案是:8、3.21、解:原式==1【分析】【分析】根据诱导公式化简计算即可.四、证明题(共4题,共24分)22、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.23、略
【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
从而四边形OBFC为平行四边形;
所以BM=MC.24、略
【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;
即可得到结论;
(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,
∵PC是⊙O的切线;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB为⊙O的直径;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC•CE=PA•BE.25、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.五、作图题(共4题,共32分)26、略
【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.
∵点A与点A′关于CD对称;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:铺设管道的最省费用为10000元.27、解:程序框图如下:
【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.28、解:由题意作示意图如下;
【分析】【分析】由题意作示意图。29、解:程序框图如下:
【分析】【分析】该函数是分段函数,当x取不同范围内的值时,函数解析式不同,因此当给出一个自变量x的值时,必须先判断x的范围,然后确定利用哪一段的解析式求函数值,因为函数解析式分了三段,所以判断框需要两个,即进行两次判断,于是,即可画出相应的程序框图.六、综合题(共3题,共18分)30、略
【分析】【分析】(1)当PM旋转到PM′时;点N移动到点N′,点N移动的距离NN′=ON′-ON;
(2)已知两三角形两角对应相等;可利用AAA证相似。
(3)可由(2)问的三角形相似得到y与x之间的函数关系式.
(4)根据图形得出S的关系式,然后在图形内根据x的取值范围确定S的取值范围.【解析】【解答】(1)解:∵sinα=且α为锐角;
∴α=60°;即∠BOA=∠MPN=60°.(1分)
∴初始状态时;△PON为等边三角形;
∴ON=OP=2;当PM旋转到PM'时,点N移动到N';
∵∠OPM'=30°;∠BOA=∠M'PN'=60°;
∴∠M'N'P=30°.(2分)
在Rt△OPM'中;ON'=2PO=2×2=4;
∴NN'=ON'-ON=4-2=2;
∴点N移动的距离为2;(3分)
(2)证明:在△OPN和△PMN中;
∠PON=∠MPN=60°,∠ONP=∠PNM,
∴△OPN∽△PMN;(4分)
(3)解:∵MN=ON-OM=y-x;
∴PN2=ON•MN=y(y-x)=y2-xy.
过P点作PD⊥OB;垂足为D.
在Rt△OPD中;
OD=OP•cos60°=2×=1,PD=POsin60°=;
∴DN=ON-OD=y-1.
在Rt△PND中;
PN2=PD2+DN2=()2+(y-1)2=y2-2y+4.(5分)
∴y2-xy=y2-2y+4;
即y=;(6分)
(4)解:在△OPM中,OM边上的高PD为;
∴S=•OM•PD=•x•x.(8分)
∵y>0;
∴2-x>0;即x<2.
又∵x>0;
∴x的取值范围是0<x<2.
∵S是x的正比例函数,且比例系数;
∴0<S<×2,即0<S<.(9分)31、略
【分析】【分析】(1)连接BO1,DO2,O2A作O1N⊥O2A于N,连接OA,根据切线长定理求出AB的长,设O1B为r,根据勾股定理得到方程(4r)2-(2r)2=42;求出方程的解即可;
(2)求出∠CMO=∠NO1O2=30°,求出OM,设AB的解析式是y=kx+b;把C;M的坐标代入得到方程组,求出方程组的解即可;
(3)①∠MO2P=30°,过B作BQ⊥OM于Q,求出MQ,BQ,过P'作P'W⊥X轴于W,根据相似三角形的性质求出PW即可得到P的坐标,根据相似三角形的性质求出k即可;②∠MO2P=120°,过P作PZ⊥X轴于Z,根据含30度角的直角三角形性质求出PZ,即可得到P的坐标,根据相似三角形的性质求出k即可.【解析】【解答】解:(1)连接BO1,O2A作O1N⊥O2A于N,连接OA,
∵直线AB切⊙O1于点B,切⊙O2于点A;交y轴于点C(0,2);
∴CA=CB;CA=CO(切线长定理);
∴CA=CB=CO;
∴AB=2OC=4;
设O1B为r,由O1O22-O2N2=O1N2得(4r)2-(2r)2=42;
解得,3r=2;
答:⊙O2的半径的长为.
(2)∵O2N=3r-r=2r,O1O2=r+3r=4r;
∴∠NO1O2=30°;
∴∠CMO=∠NO1O2=30°;
∵OM==2;
M(-2;0);
设线段AB的解析式是y=kx+b;
把C、M的坐标代入得:;
解得:k=,b=2;
∴线段AB的解析式为y=x+2(-≤x≤);
(3)△MOB是顶角为120°的等腰三角形,其底边的长为2,
假设满足条件的点P存在;
①∠MO2P=30°;
过B作BQ⊥OM于Q;
∵OB=MB;
∴MQ=OQ=;
∵∠BMO=30
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融期货合同年
- 酒店用品采购合同
- 抗转发式干扰雷达信号设计与处理方法研究
- 劳动合同终止通知书三篇
- 隐蔽通信中视觉内容隐私保护方法研究
- 2025年北京货运从业资格证考试试题及答案
- 《股票投资培训提纲》课件
- 2025年外研版七年级物理上册阶段测试试卷
- 2025年粤教版七年级物理上册阶段测试试卷含答案
- 村委会食堂协议书(2篇)
- Nokia销售五部曲培训课件
- 电子表格表格会计记账凭证模板
- 制造过程优化与工艺改进培训
- 服务人员队伍稳定措施
- 支气管镜护理测试题
- 大连理工大学信封纸
- 图形创意(高职艺术设计)PPT完整全套教学课件
- 北京版小学英语必背单词
- 艺术课程标准(2022年版)
- 2023年全国4月高等教育自学考试管理学原理00054试题及答案新编
- 稀土配合物和量子点共掺杂构筑发光软材料及其荧光性能研究
评论
0/150
提交评论