2025年人教版高二数学上册阶段测试试卷含答案_第1页
2025年人教版高二数学上册阶段测试试卷含答案_第2页
2025年人教版高二数学上册阶段测试试卷含答案_第3页
2025年人教版高二数学上册阶段测试试卷含答案_第4页
2025年人教版高二数学上册阶段测试试卷含答案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教版高二数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共7题,共14分)1、不等式组的区域面积是()

A.1

B.

C.

D.

2、复数z1=2+ai,z2=1-2i,若是纯虚数;则实数a的值为()

A.1

B.一4

C.

D.0

3、【题文】若,,,,则()A.B.C.D.4、【题文】若复数是纯虚数,则实数的值是()A.B.C.D.或5、【题文】在中,若分别为的对边,且则有()A.a、c、b成等比数列B.a、c、b成等差数列C.a、b、c成等差数列D.a、b、c成等比数列6、在等差数列中,若则的值为()A.20B.22C.24D.287、已知双曲线x2a2鈭�y2b2=1(a>0,b>0)

的离心率为62

则此双曲线的渐近线方程为(

)

A.y=隆脌2x

B.y=隆脌2x

C.y=隆脌22x

D.y=隆脌12x

评卷人得分二、填空题(共5题,共10分)8、已知P是双曲线上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为________.9、类比平面几何中“三角形任两边之和大于第三边”,得空间相应的结论为________.10、【题文】已知正方形ABCD的边长为1,则=_______.11、【题文】存在实数使得成立,则的取值范围是____.12、【题文】已知等比数列中,则前9项之和等于____.评卷人得分三、作图题(共9题,共18分)13、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

14、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)15、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)16、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

17、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)18、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)19、分别画一个三棱锥和一个四棱台.评卷人得分四、计算题(共4题,共40分)20、如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC的最小值.21、1.(本小题满分12分)已知函数在处取得极值.(1)求实数a的值;(2)若关于x的方程在[,2]上恰有两个不相等的实数根,求实数b的取值范围;(3)证明:(参考数据:ln2≈0.6931).22、1.(本小题满分12分)已知投资某项目的利润与产品价格的调整有关,在每次调整中价格下降的概率都是.设该项目产品价格在一年内进行2次独立的调整,记产品价格在一年内的下降次数为对该项目每投资十万元,取0、1、2时,一年后相应的利润为1.6万元、2万元、2.4万元.求投资该项目十万元,一年后获得利润的数学期望及方差.23、解不等式|x﹣2|+|x﹣4|>6.评卷人得分五、综合题(共1题,共9分)24、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过AB,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.

(1)求抛物线的解析式;

(2)求当AD+CD最小时点D的坐标;

(3)以点A为圆心;以AD为半径作⊙A.

①证明:当AD+CD最小时;直线BD与⊙A相切;

②写出直线BD与⊙A相切时,D点的另一个坐标:____.参考答案一、选择题(共7题,共14分)1、D【分析】

原不等式组可化为:

或画出它们表示的可行域;如图所示.

原不等式组表示的平面区域是一个三角形;

其面积S△ABC=×(2×1+2×2)=

故选D.

【解析】【答案】先依据不等式组结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域;再利用三角形的面积公式计算即可.

2、A【分析】

∵复数z1=2+ai,z2=1-2i;

∴===.

由于是纯虚数,∴=0且≠0;

解得a=1;

故选A.

【解析】【答案】首先利用两个复数代数形式的除法法则化简复数为根据实部等于0,虚部不等于0,求得实数a值.

3、C【分析】【解析】因为根据那么根据已知角的范围,可知结合两角差的余弦公式得到选C.【解析】【答案】C4、C【分析】【解析】因是纯虚数,则选C。【解析】【答案】C5、D【分析】【解析】

试题分析:由已知得,故又而故。

所以故从而a、b;c成等比数列.

考点:1、两角和与差的余弦公式;2、二倍角公式;3、正弦定理.【解析】【答案】D6、C【分析】【解答】所以故选C.7、C【分析】解:隆脽e=ca=62

故可设a=2k,c=6k

则得b=2k

隆脿

渐近线方程为y=隆脌bax=隆脌22x

故选C.

由离心率的值,可设a=2k,c=6k

则得b=2k

可得ba

的值;进而得到渐近线方程.

本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出ba

的值是解题的关键.【解析】C

二、填空题(共5题,共10分)8、略

【分析】试题分析:根据双曲线定义知;所以或(舍去),故答案为考点:1.双曲线定义;2.计算.【解析】【答案】9、略

【分析】平面中的三角形与空间中的三棱锥是类比对象,从而有结论.【解析】【答案】三棱锥任意三个面的面积之和大于第四个面的面积10、略

【分析】【解析】

试题分析:因为正方形ABCD的边长为1,所以与夹角为所以代入得

考点:向量的运算【解析】【答案】11、略

【分析】【解析】解:因为存在实数使得成立,则只要判别式故b的取值范围是或【解析】【答案】或12、略

【分析】【解析】略【解析】【答案】70三、作图题(共9题,共18分)13、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

14、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.15、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.16、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

17、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.18、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.19、解:画三棱锥可分三步完成。

第一步:画底面﹣﹣画一个三角形;

第二步:确定顶点﹣﹣在底面外任一点;

第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.

画四棱可分三步完成。

第一步:画一个四棱锥;

第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;

第三步:将多余线段擦去.

【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、计算题(共4题,共40分)20、略

【分析】【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【解析】【解答】解:如图;连接AE;

因为点C关于BD的对称点为点A;

所以PE+PC=PE+AP;

根据两点之间线段最短可得AE就是AP+PE的最小值;

∵正方形ABCD的边长为8cm;CE=2cm;

∴BE=6cm;

∴AE==10cm.

∴PE+PC的最小值是10cm.21、略

【分析】【解析】

(1)f'(x)=1+,由题意,得f'(1)=0Þa=02分(2)由(1)知f(x)=x-lnx∴f(x)+2x=x2+bóx-lnx+2x=x2+bóx2-3x+lnx+b=0设g(x)=x2-3x+lnx+b(x>0)则g'(x)=2x-3+=4分当x变化时,g'(x),g(x)的变化情况如下表。x(0,)(,1)1(1,2)2g'(x)+0-0+G(x)↗极大值↘极小值↗b-2+ln2当x=1时,g(x)最小值=g(1)=b-2,g()=b--ln2,g(2)=b-2+ln2∵方程f(x)+2x=x2+b在[,2]上恰有两个不相等的实数根高考+资-源-网由ÞÞ+ln2≤b≤28分(3)∵k-f(k)=lnk∴nk=2ó(n∈N,n≥2)设Φ(x)=lnx-(x2-1)则Φ'(x)=-=当x≥2时,Φ'(x)<0Þ函数Φ(x)在[2,+∞)上是减函数,∴Φ(x)≤Φ(2)=ln2-<0Þlnx<(x2-1)∴当x≥2时,∴>2[(1-)+(-)+(-)+(-)+()]=2(1+-)=.∴原不等式成立.12分'【解析】【答案】(1)a=0(2)+ln2≤b≤2(3)原不等式成立.22、略

【分析】由题设得则的概率分布为4分。012P故收益的概率分布为。1.622.4P所以=28分12分【解析】【答案】=223、解:当x<2时;不等式即6﹣2x>6,解得x<0.

当2≤x<4时;不等式即2>6,解得x无解.

当x≥4时;不等式即x﹣6>6,解得x>12.

综上可得,不等式的解集为(﹣∞,0)∪(12,+∞).【分析】【分析】将绝对值不等式的左边去掉绝对值,在每一段上解不等式,最后求它们的并集即可.五、综合题(共1题,共9分)24、略

【分析】【分析】(1)由待定系数法可求得抛物线的解析式.

(2)连接BC;交直线l于点D,根据抛物线对称轴的性质,点B与点A关于直线l对称,∴AD=BD.

∴AD+CD=BD+CD;由“两点之间,线段最短”的原理可知:D在直线BC上AD+CD最短,所以D是直线l与直线BC的交点;

设出直线BC的解析式为y=kx+b;可用待定系数法求得BC直线的解析式,故可求得BC与直线l的交点D的坐标.

(3)由(2)可知,当AD+CD最短时,D在直线BC上,由于已知A,B,C,D四点坐标,根据线段之间的长度,可以求出△ABD是直角三角形,即BC与圆相切.由于AB⊥l,故由垂径定理知及切线长定理知,另一点D与现在的点D关于x轴对称,所以另一点D的坐标为(1,-2).【解析】【解答】解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论