




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年沪教新版高一数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、已知集合则()A.B.C.D.2、已知则tanα的值为()A.-3B.-C.-3或-D.-3、在实数集R中定义一种运算“⊙”,具有性质:①对任意a、b∈R,a⊙b=b⊙a;②a⊙0=a;③对任意a、b∈R,(a⊙b)⊙c=(ab)⊙c+(a⊙c)+(b⊙c)﹣2c,则函数f(x)=x⊙的最小值是()A.2B.3C.D.4、如果直线的倾斜角为则有关系式()A.A=BB.A+B=0C.AB=1D.以上均不可能5、已知全集U=R,集合A={y|y=2x,x∈R},则()A.B.(0,+∞)C.(-∞,0]D.R评卷人得分二、填空题(共6题,共12分)6、函数y=lg(2+x)+lg(2-x)的图象关于____对称.(可填x轴、y轴、原点等等)7、【题文】设定义域为R的偶函数满足:
对任意的
则★(填“>”、“<”或“=”)8、【题文】如图,三棱锥中,分别为上的点,则周长最小值为____.
9、已知100名学生某月饮料消费支出情况的频率分布直方图如图所示.则这100名学生中,该月饮料消费支出超过150元的人数是____.
10、已知向量=(1,2),=(a,﹣1),若则实数a的值为____.11、已知集合A={2,5,6},B={3,5},则集合A∪B=______.评卷人得分三、证明题(共9题,共18分)12、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.13、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.14、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.15、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.16、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.17、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.18、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.19、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.
(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.20、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.评卷人得分四、计算题(共2题,共8分)21、若不等式|2x+1|-|2x-1|<a对任意实数x恒成立,则a的取值范围是____.22、解关于x的不等式12x2﹣ax>a2(a∈R).评卷人得分五、综合题(共2题,共16分)23、已知平面区域上;坐标x,y满足|x|+|y|≤1
(1)画出满足条件的区域L0;并求出面积S;
(2)对区域L0作一个内切圆M1,然后在M1内作一个内接与此圆与L0相同形状的图形L1,在L1内继续作圆M2;经过无数次后,求所有圆的面积的和.
(提示公式:)24、已知函数y1=px+q和y2=ax2+bx+c的图象交于A(1,-1)和B(3,1)两点,抛物线y2与x轴交点的横坐标为x1,x2,且|x1-x2|=2.
(1)求这两个函数的解析式;
(2)设y2与y轴交点为C,求△ABC的面积.参考答案一、选择题(共5题,共10分)1、B【分析】试题分析:集合表示的是大于1而小于4的所有实数,所以.考点:集合的交集运算.【解析】【答案】B2、B【分析】【解答】∵cotα=.所以,tanα+=﹣
3tan2α+10tanα+3=0
所以,tanα=﹣3或﹣而
∴tanα=﹣
故选B.
【分析】通过方程tanα+cotα=﹣以及cotα=求出tanα,最后根据角的范围进行求解.3、B【分析】【解答】解:根据题意,得f(x)=x⊙=(x⊙)⊙0=0⊙(x•)+(x⊙0)+(⊙0)﹣2×0=1+x+
即f(x)=1+x+
∵x>0,可得x+≥2;当且仅当x=1时等号成立,由此可得函数f(x)的最小值为f(1)=3.
故选:B
【分析】根据题中给出的对应法则,可得f(x)=(x⊙)⊙0=1+x+利用基本不等式求最值可得x+≥2,当且仅当x=1时等号成立,由此可得函数f(x)的最小值为f(1)=3.4、B【分析】【分析】因为直线的倾斜角为所以直线的斜率为1,即所以选B。
【点评】简单题,应熟练地由直线方程的一般式化为其它形式。5、C【分析】【解答】根据题意,由于全集集合A={y|y=2x,x∈R}=}={y|y>0},故有=故答案为C.
【分析】解决的关键是对于集合的补集的定义理解,以及指数函数的值域的求解,属于基础题。二、填空题(共6题,共12分)6、略
【分析】
∵f(x)=lg(2+x)+lg(2-x)
∴f(-x)=lg(2-x)+lg(2+x)=f(x)
又∵
∴-2<x<2
∴原函数得到定义域为(-2;2),关于原点对称。
∴函数f(x)是偶函数。
∴f(x)的图象关于y轴对称。
故答案为:y轴。
【解析】【答案】由定义推导原函数的奇偶性即可。
7、略
【分析】【解析】略【解析】【答案】>8、略
【分析】【解析】
试题分析:将三棱锥侧面沿剪开展成如下平面图形:
可见三点共线时周长最小,为
考点:1、三棱锥的侧面展开;2、三角形的边角关系.【解析】【答案】9、30【分析】【解答】根据频率分布直方图;得;
消费支出超过150元的频率(0.004+0.002)×50=0.3;
∴消费支出超过150元的人数是100×0.3=30.
故答案为:30.
【分析】根据频率分布直方图,利用频率、频数与样本容量的关系,即可求出正确的结果。10、2【分析】【解答】解:∵∴=0;即1×a﹣2×1=0;
∴a=2.
故答案为:2.
【分析】令=0列方程解出.11、略
【分析】解:A∪B═{2;5,6}∪{3,5}={2,3,5,6}
故答案为:{2;3,5,6}
两个集合的并集为属于集合A或属于集合B的元素;根据集合元素的互异性得到A∪B即可.
考查学生理解并集的定义,掌握集合元素的互异性.是一道基础题.【解析】{2,3,5,6}三、证明题(共9题,共18分)12、略
【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;
即可得到结论;
(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,
∵PC是⊙O的切线;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB为⊙O的直径;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC•CE=PA•BE.13、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.14、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.15、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.16、略
【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四边形GBFC是平行四边形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵过A;G的圆与BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四点共圆;
∴GA;GF=GC•GD;
即GA2=GC•GD.17、略
【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;
即可得到结论;
(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,
∵PC是⊙O的切线;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB为⊙O的直径;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC•CE=PA•BE.18、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.19、略
【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.
(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】
证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;
则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.
(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.20、略
【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;
则AC=AE;AB=5DE;
又∵G是AB的中点;
∴AG=ED.
∴ED2=AF•AE;
∴5ED2=AF•AE;
∴AB•ED=AF•AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.四、计算题(共2题,共8分)21、略
【分析】【分析】将x的值进行分段讨论,①x<-,②-≤x<,③x≥,从而可分别将绝对值符号去掉,得出a的范围,综合起来即可得出a的范围.【解析】【解答】解:当①x<-时;原不等式可化为:-1-2x-(1-2x)<a,即-2<a;
解得:a>-2;
②当-≤x<时;原不等式可化为:2x+1-(1-2x)<a,即4x<a;
此时可解得a>-2;
③当x≥时;原不等式可化为:2x+1-(2x-1)<a,即2<a;
解得:a>2;
综合以上a的三个范围可得a>2;
故答案为:a>2.22、解:由12x2﹣ax﹣a2>0⇔(4x+a)(3x﹣a)>0⇔(x+)(x﹣)>0,①a>0时,﹣<解集为{x|x<﹣或x>};
②a=0时,x2>0;解集为{x|x∈R且x≠0};
③a<0时,﹣>解集为{x|x<或x>﹣}.
综上,当a>0时,﹣<解集为{x|x<﹣或x>};
当a=0时,x2>0;解集为{x|x∈R且x≠0};
当a<0时,﹣>解集为{x|x<或x>﹣}【分析】【分析】把原不等式的右边移项到左边,因式分解后,分a大于0,a=0和a小于0三种情况分别利用取解集的方法得到不等式的解集即可.五、综合题(共2题,共16分)23、略
【分析】【分析】(1)根据绝对值的性质去掉绝对值号,作出|x|+|y|≤1的线性规划区域即可得到区域L0;然后根据正方形的面积等于对角线乘积的一半进行求解即可;
(2)求出M1、M2的面积,然后根据求解规律,后一个圆得到面积等于前一个圆的面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目版权转让协议书
- 集训服务合同协议书
- 停车场转租合同协议书
- 酒店居住安全协议书
- 解除拆迁补偿协议书
- 非婚抚养孩子协议书
- 邯郸学院就业协议书
- 转让食堂摊位协议书
- 闲置校舍转让协议书
- 茶桌转让合同协议书
- 数据中心的网络管理实践试题及答案
- 2024年中考二模 历史(四川成都卷)(考试版A4)
- 粉刷墙面施工协议书
- 辅导机构招聘合同协议
- 青年创新意识的培养试题及答案
- 【MOOC】软件质量保证-西安交通大学 中国大学慕课MOOC答案
- DG-TJ 08-2122-2021 保温装饰复合板墙体保温系统应用技术标准
- SFR-SE-ARC-0031激光跟踪设置-作业指导书
- 录音棚、摄影棚、直播室设计方案
- 安全生产隐患排查概述PPT课件
- CRCC认证目录
评论
0/150
提交评论