福建省永春一中、培元中学2023-2024学年高三第二轮复习测试卷数学试题(五)_第1页
福建省永春一中、培元中学2023-2024学年高三第二轮复习测试卷数学试题(五)_第2页
福建省永春一中、培元中学2023-2024学年高三第二轮复习测试卷数学试题(五)_第3页
福建省永春一中、培元中学2023-2024学年高三第二轮复习测试卷数学试题(五)_第4页
福建省永春一中、培元中学2023-2024学年高三第二轮复习测试卷数学试题(五)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省永春一中、培元中学2022-2023学年高三第二轮复习测试卷数学试题(五)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填().A. B. C. D.2.波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A. B. C. D.3.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A. B. C. D.4.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B.C. D.5.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过15m3的住户的户数为()A.10 B.50 C.60 D.1406.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”(注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是()A. B. C. D.7.已知为虚数单位,实数满足,则()A.1 B. C. D.8.已知复数满足,则()A. B. C. D.9.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③10.设复数z=,则|z|=()A. B. C. D.11.设为虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若满足,且目标函数的最大值为2,则的最小值为()A.8 B.4 C. D.6二、填空题:本题共4小题,每小题5分,共20分。13.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[250,400)内的学生共有____人.14.平面向量,,(R),且与的夹角等于与的夹角,则.15.实数,满足约束条件,则的最大值为__________.16.记为等比数列的前n项和,已知,,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:满意不满意男4040女8040(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?(2)为答谢顾客,该商场对某款价格为100元/件的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如下:支付方式现金支付购物卡支付APP支付频率10%30%60%优惠方式按9折支付按8折支付其中有1/3的顾客按4折支付,1/2的顾客按6折支付,1/6的顾客按8折支付将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为,求的分布列和数学期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知函数,.(1)若,,求实数的值.(2)若,,求正实数的取值范围.19.(12分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.20.(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.21.(12分)已知函数为实数)的图像在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)设函数,证明时,.22.(10分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.(Ⅰ)求证:;(Ⅱ)若点在线段上,且平面,,,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

根据程序框图写出几次循环的结果,直到输出结果是8时.【详解】第一次循环:第二次循环:第三次循环:第四次循环:第五次循环:第六次循环:第七次循环:第八次循环:所以框图中①处填时,满足输出的值为8.故选:C【点睛】此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.2.D【解析】

求得定点M的轨迹方程可得,解得a,b即可.【详解】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则=2,化简得.∵△MAB面积的最大值为8,△MCD面积的最小值为1,∴,解得,∴椭圆的离心率为.故选D.【点睛】本题考查了椭圆离心率,动点轨迹,属于中档题.3.B【解析】

求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令,则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.4.B【解析】

选B.考点:圆心坐标5.C【解析】从频率分布直方图可知,用水量超过15m³的住户的频率为,即分层抽样的50户中有0.3×50=15户住户的用水量超过15立方米所以小区内用水量超过15立方米的住户户数为,故选C6.B【解析】

先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】不超过的素数有:、、、、、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、、、、、、、、、、、、、、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、、、,共种情况,因此,所求事件的概率为.故选:B.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.7.D【解析】,则故选D.8.A【解析】

由复数的运算法则计算.【详解】因为,所以故选:A.【点睛】本题考查复数的运算.属于简单题.9.C【解析】

根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.10.D【解析】

先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.11.A【解析】

利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.【详解】,对应的点的坐标为,位于第一象限.故选:A.【点睛】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.12.A【解析】

作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得..,当且仅当,即时,等号成立.的最小值为8.故选:.【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.750【解析】因为0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.00514.2【解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角15.10【解析】

画出可行域,根据目标函数截距可求.【详解】解:作出可行域如下:由得,平移直线,当经过点时,截距最小,最大解得的最大值为10故答案为:10【点睛】考查可行域的画法及目标函数最大值的求法,基础题.16.【解析】

设等比数列的公比为,将已知条件等式转化为关系式,求解即可.【详解】设等比数列的公比为,,.故答案为:.【点睛】本题考查等比数列通项的基本量运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)有97.5%的把握认为顾客购物体验的满意度与性别有关;(2)67元,见解析.【解析】

(1)根据表格数据代入公式,结合临界值即得解;(2)的可能取值为40,60,80,1,根据题意依次计算概率,列出分布列,求数学期望即可.【详解】(1)由题得,所以,有97.5%的把握认为顾客购物体验的满意度与性别有关.(2)由题意可知的可能取值为40,60,80,1.,,,.则的分布列为4060801所以,(元).【点睛】本题考查了统计和概率综合,考查了列联表,随机变量的分布列和数学期望等知识点,考查了学生数据处理,综合分析,数学运算的能力,属于中档题.18.(1)1(2)【解析】

(1)求得和,由,,得,令,令导数求得函数的单调性,利用,即可求解.(2)解法一:令,利用导数求得的单调性,转化为,令(),利用导数得到的单调性,分类讨论,即可求解.解法二:可利用导数,先证明不等式,,,,令(),利用导数,分类讨论得出函数的单调性与最值,即可求解.【详解】(1)由题意,得,,由,…①,得,令,则,因为,所以在单调递增,又,所以当时,,单调递增;当时,,单调递减;所以,当且仅当时等号成立.故方程①有且仅有唯一解,实数的值为1.(2)解法一:令(),则,所以当时,,单调递增;当时,,单调递减;故.令(),则.(i)若时,,在单调递增,所以,满足题意.(ii)若时,,满足题意.(iii)若时,,在单调递减,所以.不满足题意.综上述:.解法二:先证明不等式,,,…(*).令,则当时,,单调递增,当时,,单调递减,所以,即.变形得,,所以时,,所以当时,.又由上式得,当时,,,.因此不等式(*)均成立.令(),则,(i)若时,当时,,单调递增;当时,,单调递减;故.(ii)若时,,在单调递增,所以.因此,①当时,此时,,,则需由(*)知,,(当且仅当时等号成立),所以.②当时,此时,,则当时,(由(*)知);当时,(由(*)知).故对于任意,.综上述:.【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.19.(1)当时,无极值;当时,极小值为;(2).【解析】

(1)求导,对参数进行分类讨论,即可容易求得函数的极值;(2)构造函数,两次求导,根据函数单调性,由恒成立问题求参数范围即可.【详解】(1)依题,当时,,函数在上单调递增,此时函数无极值;当时,令,得,令,得所以函数在上单调递增,在上单调递减.此时函数有极小值,且极小值为.综上:当时,函数无极值;当时,函数有极小值,极小值为.(2)令易得且,令所以,因为,,从而,所以,在上单调递增.又若,则所以在上单调递增,从而,所以时满足题意.若,所以,,在中,令,由(1)的单调性可知,有最小值,从而.所以所以,由零点存在性定理:,使且在上单调递减,在上单调递增.所以当时,.故当,不成立.综上所述:的取值范围为.【点睛】本题考查利用导数研究含参函数的极值,涉及由恒成立问题求参数范围的问题,属压轴题.20.(1);(2)或.【解析】

(1)分段讨论得出函数的解析式,再分范围解不等式,可得解集;(2)先求出函数的最小值,再建立关于的不等式,可求得实数的取值范围.【详解】(1)因为,所以当时,;当时,无解;当时,;综上,不等式的解集为;(2),又,或.【点睛】本题考查分段函数,绝对值不等式的解法,以及关于函数的存在和任意的问题,属于中档题.21.(1);函数的单调递减区间为,单调递增区间为;(2)详见解析.【解析】

试题分析:(1)由题得,根据曲线在点处的切线方程,列出方程组,求得的值,得到的解析式,即可求解函数的单调区间;(2)由(1)得根据由,整理得,设,转化为函数的最值,即可作出证明.试题解析:(1)由题得,函数的定义域为,,因为曲线在点处的切线方程为,所以解得.令,得,当时,,在区间内单调递减;当时,,在区间内单调递增.所以函数的单调递减区间为,单调递增区间为.(2)由(1)得,.由,得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论