福建省南平市政和县职业中学2022年高一数学理测试题含解析_第1页
福建省南平市政和县职业中学2022年高一数学理测试题含解析_第2页
福建省南平市政和县职业中学2022年高一数学理测试题含解析_第3页
福建省南平市政和县职业中学2022年高一数学理测试题含解析_第4页
福建省南平市政和县职业中学2022年高一数学理测试题含解析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省南平市政和县职业中学2022年高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,则的值为

)A.0

B.1

C.2

D.3参考答案:C2.已知,则(

)A.

B.

C.

D.参考答案:B略3.设是两个非零向量,有以下四个说法:①若,则向量在方向上的投影为;②若0,则向量与的夹角为钝角;③若,则存在实数,使得;④若存在实数,使得,则,其中正确的说法个数有(

)A.

1

B.2

C.3

D.4参考答案:A略4.已知a∥α,b?α,则直线a与直线b的位置关系是()A.平行 B.相交或异面 C.异面 D.平行或异面参考答案:D【考点】空间中直线与直线之间的位置关系.【分析】由直线a∥平面α,直线b在平面α内,知a∥b,或a与b异面.【解答】解:∵直线a∥平面α,直线b在平面α内,∴a∥b,或a与b异面,故答案为:平行或异面,5.(多选题)下列说法正确的是(

)A.直线与两坐标轴围成的三角形的面积是2B.点关于直线的对称点为(1,1)C.过,两点的直线方程为D.经过点(1,1)且在x轴和y轴上截距都相等的直线方程为参考答案:AB【分析】根据直线的方程及性质,逐项分析,A中直线在坐标轴上的截距分别为2,,所以围成三角形的面积是2正确,B中在直线上,且连线的斜率为,所以B正确,C选项需要条件,故错误,D选项错误,还有一条截距都为0的直线.【详解】A中直线在坐标轴上的截距分别为2,,所以围成三角形的面积是2正确,B中在直线上,且连线的斜率为,所以B正确,C选项需要条件,故错误,D选项错误,还有一条截距都为0的直线.【点睛】本题主要考查了直线的截距,点关于直线的对称点,直线的两点式方程,属于中档题.6.已知全集(

)

A.

B.

C.

D.参考答案:B7.若,则()A.

B.

C.

D.1参考答案:B略8.给定两个长度均为的平面向量和,它们的夹角为,点在以为圆心的圆弧上运动,如图所示,若+,其中,,则的最大值是(

A.

B.

C.

D.参考答案:D略9.已知则的值等于(

)A.

B.

C.

D.参考答案:C10.2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B(

)A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件参考答案:A【分析】事件与事件不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,得到答案.【详解】事件与事件不能同时发生,是互斥事件他还可以选择化学和政治,不是对立事件故答案选A【点睛】本题考查了互斥事件和对立事件,意在考查学生对于互斥事件和对立事件的理解.二、填空题:本大题共7小题,每小题4分,共28分11.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②对于任意的a>0,均有f(1)=1;③对于任意的a>0,函数f(x)的最大值均为4.其中所有正确的结论序号为.参考答案:②③【考点】命题的真假判断与应用.【分析】通过建立如图所示的坐标系,可得y=f(x)==(a2+1)x2﹣(4+a2)x+4.x∈[0,1].通过分类讨论,利用二次函数的单调性即可判断出.【解答】解:如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵,(0≤x≤1).∴=(﹣2,0)+x(1,a)=(x﹣2,xa),=(0,a)﹣(x﹣2,xa)=(2﹣x,a﹣xa).得y=f(x)==(a2+1)x2﹣(4+a2)x+4.x∈[0,1].①当a=2时,y=f(x)=5x2﹣8x+4=5(x﹣)+.∵0≤x≤1,∴当x=时,f(x)取得最小值;又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.综上可得:函数f(x)的值域为[,4].因此①不正确.②由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可得:?a∈(0,+∞),都有f(1)=1成立,因此②正确;③由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可知:对称轴x0=,当0<a≤时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.当a时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.因此③正确.综上可知:只有②③正确.故答案为:②③.12.已知,则_________.参考答案:略13.设向量,,若,则实数

.参考答案:14.“两个向量共线”是“这两个向量方向相反”的

条件、参考答案:必要非充分15.不等式的解集为_________.参考答案:16.以等腰直角△ABC的两个底角顶点为焦点,并且经过另一顶点的椭圆的离心率为.参考答案:【考点】椭圆的简单性质.【专题】数形结合;转化思想;圆锥曲线的定义、性质与方程.【分析】不妨设B(﹣c,0),C(c,0),A(0,b).则b=c,a2=b2+c2,化简解出即可得出.【解答】解:不妨设B(﹣c,0),C(c,0),A(0,b).则b=c,a2=b2+c2,∴c,∴=,故答案为:.【点评】本题考查了椭圆的标准方程及其性质、等腰直角三角形的性质,考查了推理能力与计算能力,属于中档题.17.(4分)函数的单调递增区间是,

.参考答案:[kπ+≤x≤kπ+,],k∈Z考点: 正弦函数的图象.专题: 三角函数的图像与性质.分析: 利用正弦函数的单调性进行求解即可.解答: ∵=﹣sin(3x﹣)∴由2kπ≤3x﹣≤2kπ,k∈Z,即kπ+≤x≤kπ+,k∈Z,故函数的递增区间为,k∈Z,故答案为[kπ+≤x≤kπ+,],k∈Z点评: 本题主要考查三角函数单调区间的求解,根据正弦函数的单调性是解决本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)计算(Ⅰ);(Ⅱ)0.0081﹣()+??.参考答案:考点: 对数的运算性质;根式与分数指数幂的互化及其化简运算.专题: 函数的性质及应用.分析: (Ⅰ)利用对数的运算法则,由已知条件能求出结果.(Ⅱ)利用指数的运算法则,由已知条件,能求出结果.解答: (Ⅰ)======﹣.(Ⅱ)0.0081﹣()+??=[(0.3)4]﹣[()3]+=0.3﹣+3=.点评: 本题考查指数和对数的运算法则,是基础题,解题时要认真解答,避免出现计算上的低级错误.19.已知圆C:,是否存在斜率为1的直线L,使以L被圆C截得的弦AB为直径的圆过原点,若存在求出直线L的方程,若不存在说明理由.参考答案:解:圆C化成标准方程为:假设存在以AB为直径的圆M,圆心M的坐标为(a,b)由于CM⊥L,∴kCM×kL=-1

∴kCM=,即a+b+1=0,得b=-a-1

①直线L的方程为y-b=x-a,即x-y+b-a=0

CM=∵以AB为直径的圆M过原点,∴,∴②把①代入②得,∴当此时直线L的方程为:x-y-4=0;当此时直线L的方程为:x-y+1=0故这样的直线L是存在的,方程为x-y-4=0或x-y+1=0.略20.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0π2πx

Asin(ωx+φ)05

﹣50(1)请将上表数据补充完整,并求出函数f(x)的解析式;(2)将y=f(x)的图象向左平移个单位,得到函数y=g(x)的图象.若关于x的方程g(x)﹣(2m+1)=0在[0,]上有两个不同的解,求实数m的取值范围.参考答案:【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.【专题】函数思想;转化法;三角函数的图像与性质.【分析】(1)根据五点法进行求解即可.(2)根据函数平移关系求出函数g(x)的表达式,利用函数和方程之间的关系转化为两个函数的交点问题即可.【解答】解:(1)根据表中已知数据,解得A=5,ω=2,φ=﹣,数据补全如下表:ωx+φ0π2πxAsin(ωx+φ)050﹣50且函数表达式为f(x)=5sin(2x﹣).(2)通过平移,g(x)=5sin(2x+),方程g(x)﹣(2m+1)=0可看成函数g(x),x∈[0,]和函数y=2m+1的图象有两个交点,当x∈[0,]时,2x+∈[,],为使横线y=2m+1与函数g(x)有两个交点,只需≤2m+1<5,解得≤m<2.【点评】本题主要考查三角函数的图象和性质,利用五点法以及函数与方程的关系进行转化是解决本题的关键.21.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中抽取若干人组成研究小组,有关数据见下表(单位:人)高校相关人数抽取人数A18xB362C54y(1)求x,y;(2)若从高校B,C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.参考答案:(1)由题意可得,所以.(2)记从高校抽取的2人为,从高校抽取的3人为,则从高校抽取的5人中选2人作专题发言的基本事件有:共10种.设选中的2人都来自高校的事件为,则事件包含的基本事件有:共3种.所以.故选中的2人都来自高校的概率为.22.(16分)(1)在学习函数的奇偶性时我们知道:若函数y=f(x)的图象关于点P(0,0)成中心对称图形,则有函数y=f(x)为奇函数,反之亦然;现若有函数y=f(x)的图象关于点P(a,b)成中心对称图形,则有与y=f(x)相关的哪个函数为奇函数,反之亦然.(2)将函数g(x)=x3+6x2的图象向右平移2个单位,再向下平移16个单位,求此时图象对应的函数解释式,并利用(1)的性质求函数g(x)图象对称中心的坐标;(3)利用(1)中的性质求函数图象对称中心的坐标,并说明理由.参考答案:考点: 对数函数图象与性质的综合应用.专题: 规律型;函数的性质及应用.分析: (1)若函数y=f(x)的图象关于点P(a,b)成中心对称图形,则将函数图象平移后,对称中心与原点重合时,该函数为奇函数,此时应向左平移a个单位,再向下平移b个单位,根据平移变换法则,可得答案.(2)根据平移变换法则,可得函数g(x)=x3+6x2的图象平移后对应的函数解析式,分析其奇偶性后,结合(1)中结论可得原函数的对称中心.(3)设函数图象向左平移a个单位,再向下平移b个单位后关于原点对称,即对应函数为奇函数,根据奇函数的定义,可求出a,b的值,结合(1)的结论可得原函数的对称中心的坐标.解答: (1)函数y=f(x)的图象关于点P(a,b)成中心对称图形,则将函数图象平移后,对称中心与原点重合时,该函数为奇函数,此时应向左平移a个单位,再向下平移b个单位,此时函数的解析式为:y=f(x+a)﹣b(2)函数g(x)=x3+6x2的图象向右平移2个单位,再向下平移16个单位,所得函数y=(x﹣2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论