下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE1-第一章常用逻辑用语1.4全称量词与存在量词A级基础巩固一、选择题1.以下四个命题既是特称命题又是真命题的是()A.锐角三角形的内角是锐角或钝角B.至少有一个实数x,使x2≤0C.两个无理数的和必是无理数D.存在一个负数x,使eq\f(1,x)>2解析:A中锐角三角形的内角是锐角或钝角是全称命题;B中x=0时,x2=0,所以B既是特称命题又是真命题;C中因为eq\r(3)+(-eq\r(3))=0,所以C是假命题;D中对于任一个负数x,都有eq\f(1,x)<0,所以D是假命题.答案:B2.下列命题中,是全称命题且是真命题的是()A.对随意的a,b∈R,都有a2+b2-2a-2b+2<0B.菱形的两条对角线相等C.∀x∈R,eq\r(x2)=xD.对数函数在定义域上是单调函数解析:A中的命题是全称命题,但是a2+b2-2a-2b+2=(a-1)2+(b-1)2≥0,故是假命题;B中的命题是全称命题,但是假命题;C中的命题是全称命题,但eq\r(x2)=|x|,故是假命题;很明显D中的命题是全称命题且是真命题,故选D.答案:D3.命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠x B.∀x∈R,x2=xC.∃x0∉R,xeq\o\al(2,0)≠x0 D.∃x0∈R,xeq\o\al(2,0)=x0解析:全称命题的否定是特称命题,所以命题“∀x∈R,x2≠x”的否定是“∃x0∈R,xeq\o\al(2,0)=x0”.答案:D4.下列命题中是假命题的是()A.∃x0∈R,lgx0=0 B.∃x0∈R,tanx0=1C.∀x∈R,x3>0 D.∀x∈R,2x>0解析:对于A,当x=1时,lgx=0,正确;对于B,当x=eq\f(π,4)时,tanx=1,正确;对于C,当x<0时,x3<0,错误;对于D,∀x∈R,2x>0,正确.答案:C5.若eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))eq\s\up12(x2-2ax)<33x+a2恒成立,则实数a的取值范围是()A.0<a<1 B.a>eq\f(3,4)C.0<a<eq\f(3,4) D.a<eq\f(3,4)解析:由题意,得-x2+2ax<3x+a2,即x2+(3-2a)x+a2>0恒成立,所以Δ=(3-2a)2-4a2<0,解得a>eq\f(3,4).答案:B二、填空题6.已知命题p:∀x>2,x3-8>0,那么¬p是________.解析:命题p为全称命题,其否定为特称命题,则¬p:∃x>2,x3-8≤0.答案:∃x>2,x3-8≤07.下列命题中,是全称命题的是________;是特称命题的是________.①正方形的四条边相等;②有两个角相等的三角形是等腰三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“全部正数的平方根不等于0”是全称命题;④是特称命题.答案:①②③④8.下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x0∈Q,xeq\o\al(2,0)=2;③∃x0∈R,xeq\o\al(2,0)+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为________.解析:x2-3x+2>0,Δ=(-3)2-4×2>0,所以当x>2或x<1时,x2-3x+2>0才成立,所以①为假命题.当且仅当x=±eq\r(2)时,x2=2,所以不存在x∈Q,使得x2=2,所以②为假命题.对∀x∈R,x2+1≠0,所以③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,所以④为假命题.所以①②③④均为假命题.答案:0三、解答题9.推断下列各命题的真假,并写出命题的否定.(1)有一个实数a,使不等式x2-(a+1)x+a>0恒成立;(2)对随意实数x,不等式|x+2|≤0恒成立;(3)在实数范围内,有些一元二次方程无解.解:(1)方程x2-(a+1)x+a=0的判别式Δ=(a+1)2-4a=(a-1)2≥0,则不存在实数a,使不等式x2-(a+1)x+a>0恒成立,所以原命题为假命题.它的否定:对随意实数a,不等式x2-(a+1)x+a>0不恒成立.(2)当x=1时,|x+2|>0,所以原命题是假命题.它的否定:存在实数x,使不等式|x+2|>0成立.(3)由一元二次方程解的状况,知该命题为真命题.它的否定:在实数范围内,全部的一元二次方程都有解.10.对于随意实数x,不等式sinx+cosx>m恒成立,求实数m的取值范围.解:令y=sinx+cosx,则y=sinx+cosx=eq\r(2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,4)))∈[-eq\r(2),eq\r(2)].因为∀x∈R,sinx+cosx>m恒成立,所以只要m<-eq\r(2)即可,所以所求m的取值范围是(-∞,-eq\r(2)).B级实力提升1.已知命题p:∀b∈[0,+∞],f(x)=x2+bx+c在[0,+∞]上为增函数,命题q:∃x0∈Z,使log2x0>0,则下列命题为真命题的是()A.(¬p)∨(¬q) B.(¬p)∧(¬q)C.p∧(¬q) D.p∨(¬q)解析:f(x)=x2+bx+c=eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(b,2)))eq\s\up12(2)+c-eq\f(b2,4),对称轴为x=-eq\f(b,2)≤0,所以f(x)在[0,+∞]上为增函数,命题p为真命题,¬p为假命题,令x0=4∈Z,则log2x0=2>0,所以命题q是真命题,¬q为假命题,p∨(¬q)为真命题.故选D.答案:D2.已知命题“∃x0∈R,2xeq\o\al(2,0)+(a-1)x0+eq\f(1,2)≤0”是假命题,则实数a的取值范围是________.解析:由题意可得“对∀x∈R,2x2+(a-1)x+eq\f(1,2)>0恒成立”是真命题,令Δ=(a-1)2-4<0,得-1<a<3.答案:(-1,3)3.若不等式(m+1)x2-(m-1)x+3(m-1)<0对随意实数x恒成立,求实数m的取值范围.解:①当m+1=0即m=-1时,原不等式为2x-6<0,不恒成立.②当m+1≠0时,则eq\b\lc\{(\a\vs4\al
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽阳职业技术学院《化工CAD制图》2023-2024学年第一学期期末试卷
- 五年级数学下册应用题-分数应用题
- 廊坊燕京职业技术学院《信息系统审计》2023-2024学年第一学期期末试卷
- 江西师范高等专科学校《新媒体网络营销划写作》2023-2024学年第一学期期末试卷
- 嘉应学院《奥尔夫音乐教学法》2023-2024学年第一学期期末试卷
- 湖州学院《传感器技术与应用》2023-2024学年第一学期期末试卷
- 湖南国防工业职业技术学院《电子学二》2023-2024学年第一学期期末试卷
- 红河卫生职业学院《传播学原理与技能》2023-2024学年第一学期期末试卷
- 淄博师范高等专科学校《现代数值仿真技术》2023-2024学年第一学期期末试卷
- 周口理工职业学院《热工材料基础》2023-2024学年第一学期期末试卷
- 2025年中国华能集团有限公司招聘笔试参考题库含答案解析
- 光伏安装施工合同范本
- 2025中考数学考点题型归纳(几何证明大题)
- 2024-2025学年度第一学期二年级数学寒假作业有答案(共20天)
- 2024年质量管理考核办法及实施细则(3篇)
- 广东省佛山市2023-2024学年高一上学期期末考试物理试题(含答案)
- 人教版九年级上册数学期末考试试卷及答案解析
- 公司转让协议书的模板8篇
- 2024年城市建设和环境提升重点工程项目计划表
- CFM56-3发动机构造课件
- 医共体的数字化转型:某县域医共体整体规划建设方案
评论
0/150
提交评论