第2章 一元一次不等式与一元一次不等式组章末重难点题型总结(学生版)_第1页
第2章 一元一次不等式与一元一次不等式组章末重难点题型总结(学生版)_第2页
第2章 一元一次不等式与一元一次不等式组章末重难点题型总结(学生版)_第3页
第2章 一元一次不等式与一元一次不等式组章末重难点题型总结(学生版)_第4页
第2章 一元一次不等式与一元一次不等式组章末重难点题型总结(学生版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2章一元一次不等式与一元一次不等式组章末重难点题型总结【北师大版】【考点1不等式的定义】【方法点拨】不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.

凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.另外,不等式中可含未知数,也可不含未知数.【例1】(2020春•丛台区校级期中)式子①x﹣y=2②x≤y③x+y④x2﹣3y⑤x≥0⑥12xA.2个 B.3个 C.4个 D.5个【变式1-1】(2020春•巴州区校级期中)在下列数学表达式:①﹣2<0,②2x﹣5≥0,③x=1,④x2﹣x,⑤x≠﹣2,⑥x+2<x﹣1中,是不等式的有()A.2个 B.3个 C.4个 D.5个【变式1-2】(2020春•叶集区期末)式子:①2>0;②4x+y≤1;③x+3≠0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个 B.2个 C.3个 D.4个【变式1-3】(2020春•毕节市期中)老师在黑板上写了下列式子:①x﹣1≥1;②﹣2<0;③x≠3;④x+2;⑤x−12y=0;⑥x+2A.2个 B.3个 C.4个 D.5个【考点2不等式的基本性质】【方法点拨】不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.【例2】(2020春•开封期末)下列不等式的变形正确的是()A.若a<b,且c≠0,则ac<bc B.若a>b,则1+a<1+b C.若ac2<bc2,则a<b D.若a>b,则ac2>bc2【变式2-1】(2020春•江阴市期末)若a<b,则下列不等式一定成立的是()A.a+2c<b+2c B.2c﹣a<2c﹣b C.a+2c>b+2c D.2ac<2bc【变式2-2】(2020春•福田区期中)下列不等式变形错误的是()A.若a>b,则1﹣a<1﹣b B.若a<b,则ax2≤bx2 C.若ac>bc,则a>b D.若m>n,则m【变式2-3】(2020春•泰山区期末)如果a<b,c<0,那么下列不等式成立的是()A.a+c<b B.a﹣c>b﹣c C.ac+1<bc+1 D.a(c﹣2)<b(c﹣2)【考点3不等式性质的运用】【方法点拨】含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.【例3】(2020春•南岗区校级月考)如果一元一次不等式(m+2)x>m+2的解集为x<1,则m必须满足的条件是()A.m<﹣2 B.m≤﹣2 C.m>﹣2 D.m≥﹣2【变式3-1】(2020春•郯城县校级期末)如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020 B.a<﹣2020 C.a>2020 D.a<2020【变式3-2】(2020春•仁寿县期中)若不等式ax−52−2−ax4>A.3 B.4 C.﹣4 D.以上答案都不对【变式3-3】(2020•回民区二模)如果不等式(a﹣2)x>2a﹣5的解集是x<4,则不等式2a﹣5y>1的解集是()A.y<52 B.y<25 C.y>【考点4解一元一次不等式及不等式组】【方法点拨】根据不等式的性质解一元一次不等式

基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.

不等式组的解的求解过程:分别求出每个不等式的解、把两个不等式的解表示在同一数轴上、取公共部分作为不等式组的解(若没有公共部分则无解).口诀:大大取大,小小取小,大小小大两头夹,大大小小是无解.【例4】(2020春•福山区期末)解下列不等式(组),并把解集表示在数轴上.2x+135x−4≤2+7x【变式4-1】(2020春•河南期末)解不等式:2x−1.50.5【变式4-2】(2020春•思明区校级月考)x取何正整数时,代数式x+13−2x−1【变式4-3】(2020春•东阿县期末)根据要求解不等式组.(1)2x−6<3xx+2(2)2x−13【考点5一次函数与一元一次不等式】【方法点拨】一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.【例5】(2020春•寿光市期末)如图,一次函数y=kx+b的图象经过点A(0,3),B(4,﹣3),则关于x的不等式kx+b+3<0的解集为()A.x>4 B.x<4 C.x>3 D.x<3【变式5-1】(2020•徐州一模)如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx﹣x<a﹣b的解集是()A.x<3 B.x>3 C.x<a+b D.x>a﹣b【变式5-2】(2019秋•南浔区期末)如图,直线y=ax+b与x轴交于点A(4,0),与直线y=mx交于点B(2,n),则关于x的不等式组0<ax﹣b<mx的解集为()A.﹣4<x<﹣2 B.x<﹣2 C.x>4 D.2<x<4【变式5-3】(2020春•东昌府区期末)如图所示,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解有()A.1个 B.2个 C.3个 D.无数个【考点6方程(组)的解构造不等式(组)求字母范围】【方法点拨】不等式组的解的求解过程:分别求出每个不等式的解、把两个不等式的解表示在同一数轴上、取公共部分作为不等式组的解(若没有公共部分则无解).口诀:大大取大,小小取小,大小小大两头夹,大大小小是无解.【例6】(2020春•龙华区校级期末)已知关于x的方程5x+m3−x−12=m【变式6-1】(2020春•高州市期末)已知关于x,y的二元一次方程组2x+y=1+2mx+2y=2−m的解满足不等式x+y为非负数,求实数m【变式6-2】(2020秋•大渡口区月考)已知方程组3x+y=−13+mx−y=1+3m的解满足x为非正数,y(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.【变式6-3】(2020春•洪山区期末)已知关于x、y的方程组3x−y=2a−5x+2y=3a+3的解都为正数,且满足a+b=4,b>0,z=a﹣3b,则zA.﹣8<z<4 B.﹣7<z<8 C.﹣7<z<4 D.﹣8<z<8【考点7根据不等式(组)的解集求字母范围】【例7】(2020春•章丘区期末)若不等式2x+53−1≤2﹣x的解集中x的每一个值,都能使关于x的不等式2x+m<1成立,则A.m<−35 B.m≤−35 C.m>−【变式7-1】(2020春•邗江区期末)已知x=4是不等式mx﹣3m+2≤0的解,且x=2不是这个不等式的解,则实数m的取值范围为()A.m≤﹣2 B.m<2 C.﹣2<m≤2 D.﹣2≤m<2【变式7-2】(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组x−2(x−1)≥32k+x3≤xA.5 B.2 C.4 D.6【变式7-3】已知不等式组2x−3a<7b+26b−3x−3<5b①若它的解集是4<x<23,求a,b的取值.②若a=b,且上述不等式无解,求a的取值范围.【考点8利用整数解求字母取值范围】【例8】(2020春•惠安县期末)已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个 B.4个 C.5个 D.6个【变式8-1】(2020春•长沙期末)关于x的不等式组52x+1>3A.1<a≤3 B.1≤a<3 C.3<a≤5 D.3≤a<5【变式8-2】(2020春•津南区校级期末)已知关于x的不等式组x−m>02x−n≤0的整数解是﹣2,﹣1,0,1,2,3,4,若m,n为整数,则m+nA.3 B.4 C.5或6 D.6或7【变式8-3】(2020春•万州区期末)已知关于x、y的方程组ax+3y=12x−3y=0的解为整数,且关于x的不等式组2(x+1)<x+53x>a−4有且仅有5个整数解,则所有满足条件的整数A.﹣1 B.﹣2 C.﹣8 D.﹣6【考点9不等式(组)中的新定义问题】【例9】(2020春•高邮市期末)我们定义:如果两个一元一次不等式有公共整数解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)不等式x≥2x≤2的“云不等式”:(填“是”或“不是”).(2)若关于x的不等式x+2m≥0不是2x﹣3<x+1的“云不等式”,求m的取值范围;(3)若a≠﹣1,关于x的不等式x+3>a与不等式ax﹣1≤a﹣x互为“云不等式”,求a的取值范围.【变式9-1】(2020春•椒江区期末)规定min(m,n)表示m,n中较小的数(m,n均为实数,且mn),例如:min{3,﹣1}=﹣1,、min{2(1)min{−12,−1(2)若min{2x−13,2}=(3)若min{2x﹣5,x+3}=﹣2,求x的值.【变式9-2】(2020春•丹阳市校级期末)定义一种新运算“a※b”:当a≥b时,a※b=2a+b;当a<b时,a※b=2a﹣b.例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空:(﹣2)※3=;(2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),则x的取值范围为;(3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范围;(4)小明在计算(2x2﹣2x+4)※(x2+4x﹣6)时随意取了一个x的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由.【变式9-3】(2019秋•九龙坡区校级月考)定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”.例如:方程2x﹣6=0的解为x=3,不等式组x−2>0x<5的解集为2<x<5.因为2<3<5.所以称方程2x﹣6=0为不等式组x−2>0(1)若关于x的方程2x﹣k=2是不等式组3x−6>4−xx−1≥4x−10的相伴方程,求k(2)若方程2x+4=0,2x−13=−1都是关于x的不等式组(m−2)x<m−2x+5≥m(3)若关于x的不等式组−x>−2x+12x≤n+2的所有相伴方程的解中,有且只有2个整数解,求n【考点10不等式(组)的应用(程序框图)】【例10】(2020春•渝中区校级期末)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x的取值范围是()A.2<x≤4 B.2≤x<4 C.2<x<4 D.2≤x≤4【变式10-1】(2020春•南岸区期末)如图,规定程序运行到“判断结果是否大于100”为第一次运算,若运算进行了三次才停止,则满足条件的整数x的个数为.【变式10-2】(2020•浙江自主招生)按下列程序进行运算(如图)规定:程序运行到“判断结果是否大于244”为一次运算.若x=5,则运算进行次才停止;若运算进行了5次才停止,则x的取值范围是.【变式10-3】(2020春•朝阳区期末)在近几年的两会中,有多位委员不断提出应在中小学开展编程教育,2019年3月教育部公布的《2019年教育信息化和网络安全工作要点》中也提出将推广编程教育.某学校的编程课上,一位同学设计了一个运算程序,如图所示.按上述程序进行运算,程序运行到“判断结果是否大于23”为一次运行.(1)若x=5,直接写出该程序需要运行多少次才停止;(2)若该程序只运行了2次就停止了,求x的取值范围.【考点11不等式(组)的应用(得分问题)】【例11】(2020春•金水区校级月考)某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120 C.10x﹣5(20﹣x)<120 D.10x﹣5(20﹣x)>120【变式11-1】(2020秋•解放区校级月考)在某校班级篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜场.【变式11-2】(2019春•南京期末)某次知识竞赛共有20道题,答对一题得5分,不答得0分、答错扣3分小明有3题没答,若竞赛成绩要超过60分,则小明至少答对几道题?【变式11-3】(2019春•德惠市期末)一次智力测验,共设20道选择题,评分标准为:对1题得a分,答错或不答1题扣b分.下表记录了2名参赛学生的得分情况.参赛学生答对题数答错或不答题数得分甲18288乙101040(1)若参赛学生小亮只答对了16道选择题,则小亮的得分是多少?(2)参赛学生至少要答道题,总分才不会低于60分.【考点12不等式(组)的应用(销售问题)】【例12】(2020•朝阳)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?()A.8 B.6 C.7 D.9【变式12-1】(2020春•太平区期末)一工厂以90元/每箱的价格购进100箱原材料,准备由甲、乙两个车间全部用于生产某种产品,甲车间用每箱原材料可生产出该产品12千克,乙车间用每箱原材料可生产出的该产品比甲车间少2千克,已知该产品的售价为40元/千克,生产的产品全部售出,那么原材料最少分配给甲车间多少箱,才能使去除成本后所获得的总利润不少于35000元?【变式12-2】(2020春•孝义市期末)为进一步提升摩托车、电动自行车骑乘人员和汽车驾乘人员安全防护水平,公安部交通管理局部署在全国开展“一盔一带”安全守护行动.某商店销值A,B两种头盔,批发价和零售价格如下表所示:名称A种头盔B种头盔批发价(元/kg)6040零售价(元/kg)8050请解答下列问题.(1)第一次,该商店批发A,B两种头盔共100个,用去4600元钱,求A,B两种头盔各批发了多少个?(2)第二次,该商店用6900元钱仍然批发这两种头盔(批发价和零售价不变),要想将第二次批发的两种头盔全部售完后,所获利润率不低于30%,则该超市第二次至少批发A种头盔多少个?【变式12-3】(2020春•衡阳期末)超市购进一批A、B两种品牌的饮料共320箱,其中A品牌比B品牌多80箱.此两种饮料每箱的进价和售价如下表所示:品牌AB进价(元/箱)5535售价(元/箱)6340(1)问销售一箱B品牌的饮料获得的利润是多少元?(注:利润=售价﹣进价)(2)问该商场购进A、B两种品牌的饮料各多少箱?(3)受市场经济影响,该商场调整销售策略,A品牌的饮料每箱打折销售,B品牌的饮料每箱售价改为38元.为使新购进的A、B两种品牌的饮料全部售出且利润不少于700元,问A种品牌的饮料每箱最低打几折出售?【考点13不等式(组)的应用(方案问题)】【例13】(2020春•防城港期末)自治区发展和改革委员会在2019年11月印发《广西壮族自治区新能源汽车推广应用攻坚行动方案》,力争到2020年底,全区新能源汽车保有量比攻坚行动前增长100%,达到14.6万辆以上,某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车至少购买1辆,购车费不少于130万元,则有哪几种购车方案?【变式13-1】(2020秋•三水区校级月考)现计划把甲种货物306吨和乙种货物230吨运往某地.已知有A、B两种不同规格的货车共50辆,如果每辆A型货车最多可装甲种货物7吨和乙种货物3吨,每辆B型货车最多可装甲种货物5吨和乙种货物7吨.(1)装贷时按此要求安排A、B两种货车的辆数,共有几种方案?(2)使用A型车每辆费用为600元,使用B型车每辆费用800元.在上述方案中,哪个方案运费最省?最省的运费是多少元?(3)在(2)的方案下,现决定对货车司机发共2100元的安全奖,已知每辆A型车奖金为m元.每辆B型车奖金为n元,38<m<n.且m、n均为整数,求此次奖金发放的具体方案.【变式13-2】(2020春•庐阳区校级月考)某体育用品店准备购进甲,乙品牌乒乓球两种,若购进甲种乒乓球10个,乙种乒乓球5个,需要100元,若购进甲种乒乓球5个,乙种乒乓球3个,需要55元.(1)求购进甲,乙两种乒乓球每个各需多少元?(2)若该体育用品店刚好用了1000元购进这两种乒乓球,考虑顾客需求,要求购进甲种乒乓球的数量不少于乙种乒乓球数量的6倍,且乙种乒乓球数量不少于23个,那么该文具店共有哪几种进货方案?(3)若该体育用品店销售每只甲种乒乓球可获利润3元,销售每只乙种乒乓球可获利润4元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?【变式13-3】(2020春•日照期末)2020年春,我国遭受了罕见的新冠病毒疫情,“病毒无情人有情”.某单位给武汉捐献一批口罩和药物共1000件,其中口罩比药物多120件.(1)求口罩和药物各有多少件?(2)现计划租用甲乙两种货车共10辆,一次性将这批口罩和药物全部运往该乡中小学.已知每辆甲种货车最多可装口罩80件和药物40件,每辆乙种货车最多可装口罩和药物各50件,那么运输部门安排甲、乙两种货车时有哪几种方案?(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元,运输部门应选择哪种方案可使运费最少?最少运费是多少元?【考点14不等式(组)的应用(分段计费问题)】【例14】(2020春•思明区校级期末)为鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费,如图是刘鹭家2019年2月和3月所交电费的收据(度数均取整数).(1)该市规定的第一阶梯电费和第二阶梯电费单价分别为多少?(2)刘鹭家4月份家庭支出计划中电费不超过120元,她家最大用电量为多少度?【变式14-1】(2020春•江岸区期末)为了促进消费,端午节期间,甲乙两家商场以同样的价格出售同样的商品,并且又各自推出不同促销方案:甲商场的优惠方案:购物价格累计超过200元后,超出200元部分按70%付费;乙商场的优惠方案:购物价格累计超过100元后,超出100元部分按75%付费;若某顾客准备购买标价为x(x>200)元的商品,(1)在甲商场购买的优惠价为元,在乙商场购买的优惠价为元;(均用含x的式子表示)(2)顾客到哪家商场购物花费少?写出解答过程;(3)乙商场为了吸引顾客,采取了进一步的优惠:购物价格累计超过100元后,但不超过1000元,超出100元部分按75%付费;超过1000元后,超出100

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论