版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年西师新版高二数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共7题,共14分)1、已知曲线上一点P(1,),则过点P的切线的倾斜角为()A.30°B.45°C.135°D.165°2、方程的实根个数是()A.3B.2C.1D.03、已知是椭圆上的一点,是该椭圆的两个焦点,若的内切圆半径为则的值为()A.B.C.D.04、已知向量=(cos120°,sin120°),=(cos30°,sin30°),则△ABC的形状为A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形5、【题文】的值()A.小于B.大于C.等于D.不存在6、【题文】某高中有学生2400人,其中一、二、三年级的学生比为5:4:3,要用分层抽样的方法从该校所有学生中抽取一个容量为120的样本,则应抽取一年级的学生A.50人B.40人C.30人D.20人7、已知向量=(3,﹣2),=(x,y﹣1)且∥若x,y均为正数,则+的最小值是()A.24B.8C.D.评卷人得分二、填空题(共5题,共10分)8、已知中,一个圆心为M,半径为的圆在内,沿着的边滚动一周回到原位。在滚动过程中,圆M至少与的一边相切,则点M到顶点的最短距离是,点M的运动轨迹的周长是。9、【题文】某公益社团有中学生36人,大学生24人,研究生16人,现用分层抽样的方法从中抽取容量为19的样本,则抽取的中学生的人数是____.10、【题文】11、已知向量=(3,2),=(﹣12,x﹣4),且∥则实数x=____.12、在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“有99%以上的把握认为吸烟与患肺癌有关”.对以下说法:(1)在100个吸烟者中至少有99人患有肺癌;(2)某个人吸烟,那么这个人有99%的概率患有肺癌;(3)在100个吸烟者中一定有患肺癌的人;(4)在100个吸烟者中可能一个患肺癌的人也没有.其中正确的是______.(填上所有正确的序号)评卷人得分三、作图题(共8题,共16分)13、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
14、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)15、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)16、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
17、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)18、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)19、分别画一个三棱锥和一个四棱台.评卷人得分四、计算题(共4题,共40分)20、如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.21、1.(本小题满分12分)已知函数在处取得极值.(1)求实数a的值;(2)若关于x的方程在[,2]上恰有两个不相等的实数根,求实数b的取值范围;(3)证明:(参考数据:ln2≈0.6931).22、1.(本小题满分12分)分别是椭圆的左右焦点,直线与C相交于A,B两点(1)直线斜率为1且过点若成等差数列,求值(2)若直线且求值.23、解关于x的不等式ax2﹣(2a+2)x+4>0.评卷人得分五、综合题(共2题,共4分)24、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过AB,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心;以AD为半径作⊙A.
①证明:当AD+CD最小时;直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:____.25、(2015·安徽)设椭圆E的方程为+=1(ab0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足=2直线OM的斜率为参考答案一、选择题(共7题,共14分)1、B【分析】试题分析:所以由导数的几何意义可得在点处切线的斜率为1,设此切线的倾斜角为即因为所以故B正确。考点:1导数的几何意义;2斜率的定义。【解析】【答案】B2、C【分析】【解析】试题分析:直接解此方程有一定的困难,要转化成图解法,由x3-6x2+9x-10=0得,x3=6x2-9x+10,分别作出函数y=x3和y=6x2-9x+10,的图象,观察两个函数的图象的交点情况即可.解;由由x3-6x2+9x-10=0得,x3=6x2-9x+10,画图,由图得一个交点.故选C考点:零点问题【解析】【答案】C3、B【分析】【解析】试题分析:因为是椭圆上的一点,所以由于的内切圆半径为所以而而在中,利用余弦定理可得两式结合可以求出所以考点:本小题主要考查内切圆半径与三边的关系、椭圆上点的性质、椭圆中基本量之间的运算、三角形面积公式、同角三角函数的基本关系式和余弦定理的综合应用,考查学生综合运用所学知识解决问题的能力和运算求解能力.【解析】【答案】B4、A【分析】【解析】
因为AB=AC,且故三角形为直角三角形,选A【解析】【答案】A5、A【分析】【解析】
试题分析:因为1弧度大约等于57度,2弧度大约等于114度,所以
又因为3弧度小于弧度,在第二象限,所以又4弧度小于弧度,大于弧度,在第三象限,所以所以
考点:三角函数的符号。
点评:本题主要考查三角函数的符号问题,常常根据角所在的象限来判断函数值的正负.【解析】【答案】A6、A【分析】【解析】略【解析】【答案】A7、B【分析】【解答】解:∵∥∴﹣2x﹣3(y﹣1)=0;
化简得2x+3y=3;
∴=(+)×(2x+3y)
=(6++6)≥(12+2)=8;
当且仅当2x=3y=时;等号成立;
∴的最小值是8.
故选:B.
【分析】根据向量共线定理列出方程,得出2x+3y=3,再求的最小值即可.二、填空题(共5题,共10分)8、略
【分析】【解析】
因为利用圆在直角三角形内滚动的运行轨迹可知,当圆m运行到点C时,此时点M到三角形ABC的顶点的距离最短,且为而点M的运行轨迹也就是圆心所经过的路径是一个与三角形相似的三角形,并且周长为6【解析】【答案】9、略
【分析】【解析】【解析】【答案】910、略
【分析】【解析】略【解析】【答案】120°11、-4【分析】【解答】解:∵∥∴﹣12×2﹣3(x﹣4)=0;
解得x=﹣4.
故答案为:﹣4.
【分析】利用向量共线定理即可得出.12、略
【分析】解:有99%以上的把握认为吸烟与患肺癌有关。
是指吸烟与患肺癌有关的正确的可能性;
(1)在100个吸烟者中至少有99人患有肺癌不正确;
(2)某个人吸烟;那么这个人有99%的概率患有肺癌也不正确;
(3)在100个吸烟者中一定有患肺癌的人也不正确;
(4)在100个吸烟者中可能一个患肺癌的人也没有是正确的.
故答案为:(4).
有99%以上的把握认为吸烟与患肺癌有关是指吸烟与患肺癌有关的正确的可能性;从而判断.
本题考查了独立性检验的应用,属于基础题.【解析】(4)三、作图题(共8题,共16分)13、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
14、略
【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.
证明:∵A与A'关于OM对称;A与A″关于ON对称;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根据两点之间线段最短,A'A''为△ABC的最小值.15、略
【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;
这样PA+PB最小;
理由是两点之间,线段最短.16、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
17、略
【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.
证明:∵A与A'关于OM对称;A与A″关于ON对称;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根据两点之间线段最短,A'A''为△ABC的最小值.18、略
【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;
这样PA+PB最小;
理由是两点之间,线段最短.19、解:画三棱锥可分三步完成。
第一步:画底面﹣﹣画一个三角形;
第二步:确定顶点﹣﹣在底面外任一点;
第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.
画四棱可分三步完成。
第一步:画一个四棱锥;
第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;
第三步:将多余线段擦去.
【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、计算题(共4题,共40分)20、略
【分析】【分析】作点B关于AC的对称点E,连接EP、EB、EM、EC,则PB+PM=PE+PM,因此EM的长就是PB+PM的最小值.【解析】【解答】解:如图;作点B关于AC的对称点E,连接EP;EB、EM、EC;
则PB+PM=PE+PM;
因此EM的长就是PB+PM的最小值.
从点M作MF⊥BE;垂足为F;
因为BC=2;
所以BM=1,BE=2=2.
因为∠MBF=30°;
所以MF=BM=,BF==,ME==.
所以PB+PM的最小值是.21、略
【分析】【解析】
(1)f'(x)=1+,由题意,得f'(1)=0Þa=02分(2)由(1)知f(x)=x-lnx∴f(x)+2x=x2+bóx-lnx+2x=x2+bóx2-3x+lnx+b=0设g(x)=x2-3x+lnx+b(x>0)则g'(x)=2x-3+=4分当x变化时,g'(x),g(x)的变化情况如下表。x(0,)(,1)1(1,2)2g'(x)+0-0+G(x)↗极大值↘极小值↗b-2+ln2当x=1时,g(x)最小值=g(1)=b-2,g()=b--ln2,g(2)=b-2+ln2∵方程f(x)+2x=x2+b在[,2]上恰有两个不相等的实数根高考+资-源-网由ÞÞ+ln2≤b≤28分(3)∵k-f(k)=lnk∴nk=2ó(n∈N,n≥2)设Φ(x)=lnx-(x2-1)则Φ'(x)=-=当x≥2时,Φ'(x)<0Þ函数Φ(x)在[2,+∞)上是减函数,∴Φ(x)≤Φ(2)=ln2-<0Þlnx<(x2-1)∴当x≥2时,∴>2[(1-)+(-)+(-)+(-)+()]=2(1+-)=.∴原不等式成立.12分'【解析】【答案】(1)a=0(2)+ln2≤b≤2(3)原不等式成立.22、略
【分析】【解析】
(1)设椭圆半焦距为c,则方程为设成等差数列由得高考+资-源-网解得6分(2)联立直线与椭圆方程:带入得12分【解析】【答案】(1)(2)23、解:不等式ax2﹣(2a+2)x+4>0;
因式分解得:(ax﹣2)(x﹣2)>0;
若a=0;不等式化为﹣2(x﹣2)>0,则解集为{x|x<2};
若a≠0时,方程(ax﹣2)(x﹣2)=0的两根分别为2;
①若a<0,则<2,此时解集为{x|<x<2};
②若0<a<1,则>2,此时解集为{x|x<2或x>};
③若a=1,则不等式化为(x﹣2)2>0;此时解集为{x|x≠2};
④若a>1,则<2,此时解集为{x|x>2或x<}【分析】【分析】已知不等式左边分解因式后,分a=0与a≠0两种情况求出解集即可.五、综合题(共2题,共4分)24、略
【分析】【分析】(1)由待定系数法可求得抛物线的解析式.
(2)连接BC;交直线l于点D,根据抛物线对称轴的性质,点B与点A关于直线l对称,∴AD=BD.
∴AD+CD=BD+CD;由“两点之间,线段最短”的原理可知:D在直线BC上AD+CD最短,所以D是直线l与直线BC的交点;
设出直线BC的解析式为y=kx+b;可用待定系数法求得BC直线的解析式,故可求得BC与直线l的交点D的坐标.
(3)由(2)可知,当AD+CD最短时,D在直线BC上,由于已知A,B,C,D四点坐标,根据线段之间的长度,可以求出△ABD是直角三角形,即BC与圆相切.由于AB⊥l,故由垂径定理知及切线长定理知,另一点D与现在的点D关于x轴对称,所以另一点D的坐标为(1,-2).【解析】【解答】解:
(1)设抛物线的解析式为y=a(x+1)(x-3).(1分)
将(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴抛物线的解析式为y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)连接BC;交直线l于点D.
∵点B与点A关于直线l对称;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“两点之间;线段最短”的原理可知:
此时AD+CD最小;点D的位置即为所求.(5分)
设直线BC的解析式为y=kx+b;
由直线BC过点(3;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年人造草坪行业市场研究及战略规划代理合同3篇
- 个性化司机租赁合同书2024年版版
- 2025年电商绿色环保产品推广合作合同范本3篇
- 二零二五年度出国劳务合同税务筹划及合规操作指南4篇
- 二零二五版苗圃基地苗木品种改良与选育合同4篇
- 二零二五版农家乐乡村旅游基础设施建设项目合同4篇
- 二零二五年度健身俱乐部教练聘用合同模板4篇
- 2025年度车库门智能控制系统升级合同4篇
- 2025年度新型防火门采购与安装服务合同范本4篇
- 2025年度电梯玻璃门设计与安装服务合同4篇
- 数学-山东省2025年1月济南市高三期末学习质量检测济南期末试题和答案
- 中储粮黑龙江分公司社招2025年学习资料
- 湖南省长沙市2024-2025学年高一数学上学期期末考试试卷
- 船舶行业维修保养合同
- 2024年林地使用权转让协议书
- 物流有限公司安全生产专项整治三年行动实施方案全国安全生产专项整治三年行动计划
- 2025届江苏省13市高三最后一卷生物试卷含解析
- 当前中国个人极端暴力犯罪个案研究
- 中国象棋比赛规则
- 7天减肥餐食谱给你最能瘦的一周减肥食谱
- GB/T 31525-2015图形标志电动汽车充换电设施标志
评论
0/150
提交评论