版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页商丘职业技术学院
《包装结构与材料》2023-2024学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的动作识别是对视频中人物或物体的动作进行分类和理解。假设要识别一段舞蹈视频中的各种舞蹈动作,同时要考虑动作的速度、幅度和风格的变化。以下哪种动作识别方法在处理这种复杂的动作模式时表现更好?()A.基于手工特征的动作识别B.基于时空兴趣点的动作识别C.基于深度学习的时空卷积网络D.基于隐马尔可夫模型的动作识别2、计算机视觉中的动作识别是对视频中人物或物体的动作进行分类和识别。以下关于动作识别的描述,不准确的是()A.动作识别需要分析视频中的时空特征来理解动作的模式和类别B.双流卷积网络在动作识别任务中被广泛应用,分别处理空间和时间信息C.动作识别在体育分析、视频监控和智能安防等领域具有重要的应用价值D.动作识别技术已经非常成熟,能够准确识别各种复杂和细微的动作3、在计算机视觉的图像特征提取中,假设要提取对光照、旋转和缩放具有不变性的特征。以下关于特征提取方法的描述,正确的是:()A.SIFT特征具有良好的不变性,但计算复杂度高,实时性差B.HOG特征对光照变化适应性强,但对旋转和缩放较敏感C.LBP特征能够快速提取,但特征表达能力有限D.没有一种特征提取方法能够同时满足对光照、旋转和缩放的不变性要求4、在图像去噪中,BM3D(Block-Matchingand3DFiltering)算法的优势在于()A.去噪效果好B.保持图像细节C.计算效率高D.以上都是5、计算机视觉中的场景理解需要从图像中推断出物体之间的关系和场景的语义信息。假设要理解一张室内办公室场景的图像,包括家具的布局、人员的活动等。以下哪种方法在进行场景理解时最为有效?()A.基于对象检测和分类的方法B.基于图模型的场景表示C.基于深度学习的场景解析D.基于规则推理的方法6、计算机视觉中的无人驾驶技术是一个综合性的应用领域。以下关于无人驾驶中的计算机视觉的说法,不正确的是()A.计算机视觉在无人驾驶中用于环境感知、目标检测、路径规划和障碍物避让等任务B.深度学习方法能够实时准确地识别道路标志、车辆和行人等物体C.无人驾驶中的计算机视觉系统已经非常成熟,能够应对各种复杂的交通场景D.恶劣天气条件和光照变化等因素仍然是无人驾驶中计算机视觉面临的挑战7、计算机视觉中的光流计算用于估计图像中像素的运动。假设要对一个快速运动的物体进行光流估计,同时场景中存在光照变化和噪声干扰。在这种情况下,以下哪种光流计算方法能够提供更准确和稳定的结果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法8、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设一个工厂需要检测生产线上的零件是否存在缺陷。以下关于工业检测中的计算机视觉的描述,哪一项是不准确的?()A.能够快速准确地检测出零件的表面缺陷、尺寸偏差等问题B.可以通过机器视觉系统对零件进行自动分类和筛选C.工业检测中的计算机视觉系统需要高度的稳定性和可靠性,对环境变化不敏感D.计算机视觉在工业检测中的应用已经非常成熟,不需要人工干预和校验9、图像检索是计算机视觉的一个重要应用。假设我们要在一个大型图像数据库中快速找到与给定查询图像相似的图像,以下哪种图像表示方法可能对提高检索效率有帮助?()A.全局特征表示B.局部特征表示C.基于深度学习的特征表示D.基于颜色直方图的特征表示10、计算机视觉中的图像去噪旨在去除图像中的噪声,恢复清晰的图像。假设要处理一张受到严重噪声污染的天文图像,以下关于去噪算法的选择,哪一项是需要谨慎考虑的?()A.选择基于滤波的去噪算法,如中值滤波B.采用基于深度学习的去噪算法,如自编码器C.只考虑去噪效果,不关心图像细节的保留D.根据噪声的类型和强度选择合适的去噪算法11、计算机视觉中的表情识别旨在识别图像或视频中人物的表情。假设要在一个情感分析系统中准确识别表情,以下关于表情识别方法的描述,正确的是:()A.基于几何特征的表情识别方法对表情的细微变化不敏感,识别准确率低B.基于纹理特征的表情识别方法能够很好地捕捉表情的局部特征,但容易受到光照影响C.深度学习中的卷积神经网络在表情识别中能够学习到全局和局部的特征,但对大规模数据集依赖严重D.表情识别系统只适用于正面清晰的人脸表情,对于侧脸和遮挡的表情无法识别12、在计算机视觉的姿态估计任务中,需要确定物体在三维空间中的方向和位置。假设要估计一个机器人手臂的姿态,以实现精确的控制和操作。以下哪种姿态估计方法在处理这种机械结构时准确性更高?()A.基于模型的姿态估计B.基于深度学习的姿态估计C.基于视觉惯性里程计的姿态估计D.基于几何约束的姿态估计13、在计算机视觉的视频理解任务中,例如理解一段体育比赛视频中的精彩瞬间和战术,需要对视频中的时空信息进行有效建模。以下哪种方法在时空建模方面可能具有优势?()A.3D卷积神经网络B.长短时记忆网络C.注意力机制D.以上都是14、计算机视觉中的图像配准是将不同时间、不同视角或不同传感器获取的图像进行对齐。假设要将两张拍摄角度不同的卫星图像进行配准,以下关于图像配准方法的描述,哪一项是不正确的?()A.基于特征的图像配准方法通过提取图像中的显著特征,并进行匹配来实现配准B.基于灰度的图像配准方法直接比较图像的灰度值,计算相似性度量来完成配准C.图像配准的精度主要取决于特征提取的准确性和匹配算法的性能D.图像配准总是能够完美地将两张图像对齐,不存在任何误差15、在计算机视觉的目标跟踪任务中,需要在连续的图像帧中持续跟踪一个特定的目标。假设要跟踪一个在运动场上快速移动且形状变化的运动员,同时存在其他相似物体的干扰。以下哪种目标跟踪算法在这种具有挑战性的场景下表现更佳?()A.基于卡尔曼滤波的跟踪B.基于粒子滤波的跟踪C.基于深度学习的跟踪D.基于均值漂移的跟踪16、目标检测是计算机视觉中的常见任务,例如在监控视频中检测行人或车辆。假设我们要开发一个目标检测系统,以下关于目标检测算法的描述,哪一项是不正确的?()A.基于区域建议的方法,如R-CNN系列算法,通过生成候选区域并对其进行分类和定位来实现目标检测B.一阶段目标检测算法,如YOLO和SSD,直接在图像上进行目标的分类和定位,速度相对较快C.目标检测算法的性能通常用准确率、召回率和平均精度均值(mAP)等指标来评估D.目标检测算法的精度和速度是相互独立的,提高精度不会影响速度,反之亦然17、计算机视觉在文物保护和数字化中的应用可以帮助记录和分析文物信息。假设要对一件古老的雕塑进行三维数字化和表面纹理分析,以下关于文物保护计算机视觉应用的描述,正确的是:()A.传统的摄影测量方法在文物数字化中比基于深度学习的方法更精确B.文物的复杂形状和表面材质对数字化和分析过程没有挑战C.结合多种成像技术和计算机视觉算法能够更全面地获取文物的信息D.文物保护中的计算机视觉应用不需要考虑对文物的非接触性和无损性要求18、在计算机视觉的目标识别任务中,假设要识别不同种类的水果。以下关于应对类内差异和类间相似性的策略,哪一项是不正确的?()A.增加训练数据的多样性,包括不同角度、大小和成熟度的水果B.提取更具区分性的特征,减少类内差异和类间相似性的影响C.降低模型的复杂度,避免过度拟合类内差异和类间相似性D.忽略类内差异和类间相似性,依靠模型的自动适应能力19、在计算机视觉的图像增强任务中,旨在改善图像的质量。假设一张低光照条件下拍摄的照片需要增强。以下关于图像增强方法的描述,哪一项是错误的?()A.可以通过直方图均衡化方法增强图像的对比度B.基于滤波的方法能够去除图像中的噪声,同时增强细节C.图像增强可以无限制地提高图像的质量,不存在过度增强的问题D.深度学习中的生成对抗网络(GAN)也可以用于图像增强20、计算机视觉在无人驾驶中的应用至关重要。假设要通过车载摄像头识别道路上的交通标志和标线,以下关于应对复杂环境变化的策略,哪一项是不正确的?()A.利用多模态数据融合,如结合摄像头和激光雷达的信息B.定期更新模型,适应新出现的交通标志和标线C.只依靠单一摄像头的图像信息,不考虑其他传感器D.对不同天气和光照条件下的数据进行增强训练21、在计算机视觉的目标跟踪任务中,目标可能会被遮挡、变形或快速移动。假设要跟踪一个在人群中快速移动的人物,以下哪种跟踪算法可能更适合应对这种复杂情况?()A.基于卡尔曼滤波的跟踪算法B.基于粒子滤波的跟踪算法C.基于均值漂移的跟踪算法D.基于模板匹配的跟踪算法22、视频分析是计算机视觉的一个重要领域。假设我们要分析一段监控视频,以检测异常行为,如打架、盗窃等。对于这种实时性要求较高的视频分析任务,以下哪种方法更适合用于快速处理和检测?()A.对每一帧图像单独进行分析B.基于光流的方法跟踪对象运动C.利用深度学习模型直接对视频进行分析D.采用传统的图像处理方法,如背景减除23、计算机视觉中的目标重识别任务旨在在不同的摄像头视角中识别出同一目标。假设要在一个大型商场的多个摄像头中寻找一个特定的人物。以下关于目标重识别的描述,哪一项是不准确的?()A.可以通过提取目标的特征,如颜色、形状和纹理,来进行重识别B.深度学习中的特征学习方法能够提高目标重识别的准确率C.目标重识别不受摄像头视角、光照和人物姿态变化的影响D.可以通过建立目标的特征库,快速在多个摄像头中进行匹配和搜索24、在计算机视觉的目标识别任务中,假设目标物体被部分遮挡,以下哪种模型架构可能更有助于恢复被遮挡部分的信息?()A.多层感知机(MLP)B.卷积神经网络(CNN)C.循环神经网络(RNN)D.注意力机制(AttentionMechanism)25、在一个基于计算机视觉的智能交通监控系统中,需要对车辆的类型、速度和行驶轨迹进行分析。以下哪种技术在车辆分析方面可能发挥关键作用?()A.目标检测和跟踪B.车牌识别C.轨迹预测D.以上都是二、简答题(本大题共4个小题,共20分)1、(本题5分)解释计算机视觉中的联邦学习在分布式数据处理中的应用。2、(本题5分)简述计算机视觉在军事中的目标识别和战场态势感知。3、(本题5分)说明计算机视觉在旧货回收行业中的应用。4、(本题5分)解释在计算机视觉中卷积神经网络的结构和工作原理。三、分析题(本大题共5个小题,共25分)1、(本题5分)某游戏公司的品牌标识设计简洁易记,具有独特的视觉形象。请分析该标识在建立品牌认知度、塑造品牌个性、拓展品牌影响力方面的作用,以及如何在不同的宣传渠道中保持一致性和识别性。2、(本题5分)研究某化妆品店的品牌合作活动宣传海报设计,探讨其如何通过视觉元素展示合作品牌的优势和吸引顾客。3、(本题5分)某音乐会的门票设计结合了音乐元素和演出场地的特色。请研究此门票设计如何增加门票的收藏价值,如何为观众营造期待感,以及在宣传
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024能源科技公司储能系统采购合同
- 2024版设备采购合同格式
- 2024施工工人安全合同协议书
- 二零二五年度房地产项目承包合同修订补充协议3篇
- 二零二五年度阿里云服务器租赁服务合同2篇
- 二零二五年度通讯器材店面承包协议3篇
- 二零二五年度保温材料行业环保标准制定合同3篇
- 2025年度铁路货物卸车操作承包合同3篇
- 二零二五年度建筑工地分包单位安全防护与消防保卫协议3篇
- 2025届高考物理二轮复习:微专题6 电磁场中的空间立体问题和摆线问题-专项训练 【含答案】
- 专项债券培训课件
- 2025年1月普通高等学校招生全国统一考试适应性测试(八省联考)语文试题
- 2024城市河湖底泥污染状况调查评价技术导则
- MT-T 1199-2023 煤矿用防爆柴油机无轨胶轮运输车辆通用安全技术条件
- 全国各地木材平衡含水率年平均值
- 小学二年级100以内进退位加减法混合运算
- 市委组织部副部长任职表态发言
- 电气化铁路有关人员电气安全规则
- 大连公有住房规定
- HXD1D客运电力机车转向架培训教材
- 初级销售管理培训课程
评论
0/150
提交评论