版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/福建省南平市金桥学校高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线的倾斜角是()A.
B.
C.
D.参考答案:C2.2位男生和3位女生共5位同学站成一排,3位女生中有且只有两位女生相邻,则不同排法的种数是(
).A.72 B.60 C.36 D.24参考答案:A从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,将A,B插入到2名男生全排列后所成的3个空中的2个空中,故有种,本题选择A选项.3.已知函数,若对任意两个不等的正数,都有成立,则实数的取值范围是(A)
(B)
(C)
(D)参考答案:B即在上单增,即恒成立,也就是恒成立,,故选B4.已知双曲线的左、右焦点分别为F1、F2,若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心率e的取值范围为()A.[,+∞) B.[2,+∞) C. D.(1,2]参考答案:D【考点】双曲线的简单性质.【分析】设P点的横坐标为x,根据|PF1|=3|PF2|,P在双曲线右支(x≥a),利用双曲线的第二定义,可得x关于e的表达式,进而根据x的范围确定e的范围.【解答】解:设P点的横坐标为x∵|PF1|=3|PF2|,P在双曲线右支(x≥a)根据双曲线的第二定义,可得3e(x﹣)=e(x+)∴ex=2a∵x≥a,∴ex≥ea∴2a≥ea,∴e≤2∵e>1,∴1<e≤2故选D.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于基础题.5.若直线与双曲线的右支交于不同的两点,那么的取值范围是(
)(A)()
(B)()
(C)()
(D)()参考答案:D6.在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB的长,则该矩形面积不小于9cm2的概率为()A. B. C. D.参考答案:A【考点】几何概型.【分析】根据几何概型的概率公式,设AC=x,则BC=10﹣x,由矩形的面积S=x(10﹣x)≥9可求x的范围,利用几何概率的求解公式可求.【解答】解:设AC=x,则BC=10﹣x,矩形的面积S=x(10﹣x)≥9,∴x2﹣10x+9≤0解得1≤x≤9,由几何概率的求解公式可得,矩形面积不小于9cm2的概率为P==.故选:A.7.已知向量a=(2,-1,3),b=(-4,2,x),且(a+b)⊥a,则x=(
)A.
B.
C.
D.参考答案:A略8.四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程和相关系数,分别得到以下四个结论:①y=2.35x-6.42,r=-0.93
②y=-3.47x+5.56,r=-0.95③y=5.43x+8.49,r=0.98
④y=-4.32x-4.58,r=0.89其中,一定不正确的结论序号是(
)A.②③
B.①④
C.①②③
D.②③④参考答案:B9.函数y=2﹣x2﹣x3的极值情况是()A.有极大值,没有极小值 B.有极小值,没有极大值C.既无极大值也无极小值 D.既有极大值又有极小值参考答案:D【考点】6D:利用导数研究函数的极值.【分析】由已知得y′=﹣2x﹣3x2,令y′=0,得x=0或x=﹣,由此能求出函数y=2﹣x2﹣x3既有极大值又有极小值.【解答】解:∵y=2﹣x2﹣x3,∴y′=﹣2x﹣3x2,由y′=0,得x=0或x=﹣,x∈(﹣∞,﹣)时,y′>0;x∈(﹣,0)时,y′<0;x∈(0,+∞)时,y′>0,∴函数y=2﹣x2﹣x3的增区间是(﹣∞,﹣),(0,+∞);减区间是(﹣),∴函数y=2﹣x2﹣x3既有极大值又有极小值.故选:D.【点评】本题考查函数的单调区间的求法,考查实数的极值的求法,解题时要认真审题,注意导数性质和分类讨论思想的合理运用.10.已知过点P(-2,m),Q(m,4)的直线的倾斜角为45°,则m的值为
A.1
B.2
C.3
D.4参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,若且,则的取值范围是
.参考答案:12.观察下列等式:(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5…照此规律,第n个等式可为.参考答案:(n+1)(n+2)(n+3)…(n+n)=2n?1?3?5…?(2n﹣1)【考点】归纳推理.【专题】压轴题;阅读型.【分析】通过观察给出的前三个等式的项数,开始值和结束值,即可归纳得到第n个等式.【解答】解:题目中给出的前三个等式的特点是第一个等式的左边仅含一项,第二个等式的左边含有两项相乘,第三个等式的左边含有三项相乘,由此归纳第n个等式的左边含有n项相乘,由括号内数的特点归纳第n个等式的左边应为:(n+1)(n+2)(n+3)…(n+n),每个等式的右边都是2的几次幂乘以从1开始几个相邻奇数乘积的形式,且2的指数与奇数的个数等于左边的括号数,由此可知第n个等式的右边为2n?1?3?5…(2n﹣1).所以第n个等式可为(n+1)(n+2)(n+3)…(n+n)=2n?1?3?5…(2n﹣1).故答案为(n+1)(n+2)(n+3)…(n+n)=2n?1?3?5…(2n﹣1).【点评】本题考查了归纳推理,归纳推理是根据已有的事实,通过观察、联想、对比,再进行归纳,类比,然后提出猜想的推理,是基础题.13.从装有3个红球,3个白球的袋中随机取出2个球,设其中有个红球,则=
参考答案:14.过点P(2,3),并且在两轴上的截距相等的直线方程为.参考答案:x+y﹣5=0,或3x﹣2y=0【考点】直线的截距式方程.【专题】计算题.【分析】分直线的截距不为0和为0两种情况,用待定系数法求直线方程即可.【解答】解:若直线的截距不为0,可设为,把P(2,3)代入,得,,a=5,直线方程为x+y﹣5=0若直线的截距为0,可设为y=kx,把P(2,3)代入,得3=2k,k=,直线方程为3x﹣2y=0∴所求直线方程为x+y﹣5=0,或3x﹣2y=0故答案为x+y﹣5=0,或3x﹣2y=0【点评】本题考查了直线方程的求法,属于直线方程中的基础题,应当掌握.15.设Sn为等比数列{an}的前n项和,8a2+a5=0,则=
参考答案:-1116.如图,已知过原点O的直线与函数的图象交于A,B两点,分别过A,B作y轴的平行线与函数图象交于C,D两点,若BC∥x轴,则四边形ABDC的面积为
.参考答案:设点A、B的横坐标分别为x1、x2由题设知,x1>1,x2>1.
则点A、B纵坐标分别为log8x1、log8x2.
因为A、B在过点O的直线上,所以点C、D坐标分别为(x1,log2x1),(x2,log2x2).
由于BC平行于x轴知log2x1=log8x2,即得log2x1=log2x2,∴x2=x13.
代入x2log8x1=x1log8x2得x13log8x1=3x1log8x1.由于x1>1知log8x1≠0,∴x13=3x1.考虑x1>1解得x1=.
于是点A的坐标为(,log8)即A(,log23)
∴B(3,log23),C(,log23),D(3,log23).
∴梯形ABCD的面积为S=(AC+BD)×BC=(log23+log23)×2=log23.
故答案为:log23
17.
如图所示的流程图的输出结果为sum=132,则判断框中?处应填________.参考答案:11三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)甲乙丙三人独立破译同一份密码.已知甲乙丙各自独立破译出密码的概率分别为且他们是否破译出密码互不影响。(1)求恰有二人破译出密码的概率;(2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由。参考答案:解:记“甲单独破译出密码”为事件A;
记“乙单独破译出密码”为事件B;记“丙单独破译出密码”为事件C.则事件A、B、C彼此相互独立,且(1)
事件“恰有二人破译出密码”就是事件19.(本小题满分13分)如图,在四棱锥中,底面为矩形,底面,、分别是、中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:.参考答案:证明:(Ⅰ)取中点,连结.因为是中点,所以.
………………2分又是中点,,所以,四边形是平行四边形.………4分所以.
………………5分因为平面,平面,所以平面.………………7分(Ⅱ)因为平面,所以.
………………8分又是矩形,所以.
………………9分所以平面,
………………10分所以.
………………11分又
,所以.
………………13分20.若.求:(1);(2);(3);(4);(5).参考答案:(1)令,得;(2)令,得;(3)由(2)知,①令,得,②①-②得,;(4)①+②得,;(5)令,得,故.21.(本小题满分分)已知点是一个动点,且直线的斜率之积为.(Ⅰ)求动点的轨迹方程;(Ⅱ)设,过点的直线交于两点,的面积记为,若对满足条件的任意直线,不等式恒成立,求的最小值.参考答案:(1)设动点P的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度飞机租赁与飞行员培训服务合同3篇
- 2025届江苏苏州市四校高三12月联考语文试题(学生版)
- 儿童身体协调性训练考核试卷
- 公路客运服务投诉处理与改进考核试卷
- 2025版木屋建筑工程质量保修合同示范文本4篇
- 2025版学校小卖部环保购物袋定制与销售合同2篇
- 2025年分期美食体验券购买合同
- 2025年养老保险担保合同
- 2025年婴童用品赠与合同
- 2025年仓库货物清点协议
- 中央2025年国务院发展研究中心有关直属事业单位招聘19人笔试历年参考题库附带答案详解
- 2024年09月北京中信银行北京分行社会招考(917)笔试历年参考题库附带答案详解
- 外呼合作协议
- 小学二年级100以内进退位加减法800道题
- 保险公司2025年工作总结与2025年工作计划
- 2024年公司领导在新年动员会上的讲话样本(3篇)
- 眼科护理进修专题汇报
- GB/T 33629-2024风能发电系统雷电防护
- 深静脉血栓(DVT)课件
- 2023年四川省广元市中考数学试卷
- GB/T 19885-2005声学隔声间的隔声性能测定实验室和现场测量
评论
0/150
提交评论