北京市第十九中2024届5月高三模拟试卷_第1页
北京市第十九中2024届5月高三模拟试卷_第2页
北京市第十九中2024届5月高三模拟试卷_第3页
北京市第十九中2024届5月高三模拟试卷_第4页
北京市第十九中2024届5月高三模拟试卷_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市第十九中2023届5月高三模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在中,,是上的一点,若,则实数的值为()A. B. C. D.2.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.73.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是()A. B. C. D.4.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的周长的取值范围是()A. B. C. D.5.已知f(x),g(x)都是偶函数,且在[0,+∞)上单调递增,设函数F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,则()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)6.已知某几何体的三视图如图所示,则该几何体的体积是()A. B.64 C. D.327.已知集合,则等于()A. B. C. D.8.数列满足:,,,为其前n项和,则()A.0 B.1 C.3 D.49.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A. B. C. D.10.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.23 B.21 C.35 D.3211.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种 B.360种 C.240种 D.120种12.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.14.曲线在处的切线的斜率为________.15.定义在上的偶函数满足,且,当时,.已知方程在区间上所有的实数根之和为.将函数的图象向右平移个单位长度,得到函数的图象,则__________,__________.16.已知实数满足,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求不等式的解集;(2)当时,求实数的取值范围.18.(12分)在四棱锥中,底面为直角梯形,,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.19.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值.20.(12分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程;(2)求曲线上的点到直线的距离的最大值与最小值.22.(10分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:分数段[50,60)[60,70)[70,80)[80,90)[90,100]人数51515123(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?合格不合格合计高一新生12非高一新生6合计(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.参考公式及数据:,其中.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

变形为,由得,转化在中,利用三点共线可得.【详解】解:依题:,又三点共线,,解得.故选:.【点睛】本题考查平面向量基本定理及用向量共线定理求参数.思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值.(2)直线的向量式参数方程:三点共线⇔(为平面内任一点,)2.C【解析】

根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.3.A【解析】

联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.4.B【解析】

根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【详解】抛物线,则焦点,准线方程为,根据抛物线定义可得,圆,圆心为,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.5.A【解析】试题分析:由题意得,F(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),∴F(-a)=F(a),综上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故选A.考点:1.函数的性质;2.分类讨论的数学思想.【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致1-a与1+a大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.6.A【解析】

根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.7.C【解析】

先化简集合A,再与集合B求交集.【详解】因为,,所以.故选:C【点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.8.D【解析】

用去换中的n,得,相加即可找到数列的周期,再利用计算.【详解】由已知,①,所以②,①+②,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.9.C【解析】令圆的半径为1,则,故选C.10.B【解析】

根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21.故选:B【点睛】本小题主要考查随机数表法进行抽样,属于基础题.11.B【解析】

将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,∴共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.12.D【解析】

根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:,由条件概率公式即得解.【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:故答案为:【点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.14.【解析】

求出函数的导数,利用导数的几何意义令,即可求出切线斜率.【详解】,,,即曲线在处的切线的斜率.故答案为:【点睛】本题考查了导数的几何意义、导数的运算法则以及基本初等函数的导数,属于基础题.15.24【解析】

根据函数为偶函数且,所以的周期为,的实数根是函数和函数的图象的交点的横坐标,在平面直角坐标系中画出函数图象,根据函数的对称性可得所有实数根的和为,从而可得参数的值,最后求出函数的解析式,代入求值即可.【详解】解:因为为偶函数且,所以的周期为.因为时,,所以可作出在区间上的图象,而方程的实数根是函数和函数的图象的交点的横坐标,结合函数和函数在区间上的简图,可知两个函数的图象在区间上有六个交点.由图象的对称性可知,此六个交点的横坐标之和为,所以,故.因为,所以.故.故答案为:;【点睛】本题考查函数的奇偶性、周期性、对称性的应用,函数方程思想,数形结合思想,属于难题.16.【解析】

作出不等式组所表示的平面区域,将目标函数看作点与可行域的点所构成的直线的斜率,当直线过时,直线的斜率取得最大值,代入点A的坐标可得答案.【详解】画出二元一次不等式组所表示的平面区域,如下图所示,由得点,目标函数表示点与可行域的点所构成的直线的斜率,当直线过时,直线的斜率取得最大值,此时的最大值为.故答案为:.【点睛】本题考查求目标函数的最值,关键在于明确目标函数的几何意义,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)当时,的取值范围为;当时,的取值范围为.【解析】

(1)当时,分类讨论把不等式化为等价不等式组,即可求解.(2)由绝对值的三角不等式,可得,当且仅当时,取“”,分类讨论,即可求解.【详解】(1)当时,,不等式可化为或或,解得不等式的解集为.(2)由绝对值的三角不等式,可得,当且仅当时,取“”,所以当时,的取值范围为;当时,的取值范围为.【点睛】本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题.18.(1)存在;详见解析(2)【解析】

(1)利用面面平行的性质定理可得,为上靠近点的三等分点,中点,证明平面平面即得;(2)过作交于,可得两两垂直,以分别为轴建立空间直角坐标系,求出长,写出各点坐标,用向量法求二面角.【详解】解:(1)当为上靠近点的三等分点时,满足面.证明如下,取中点,连结.即易得所以面面,即面.(2)过作交于面,两两垂直,以分别为轴建立空间直角坐标系,如图,设面法向量,则,即取同理可得面的法向量综上可知锐二面角的余弦值为.【点睛】本题考查立体几何中的存探索性命题,考查用空间向量法求二面角.线面平行问题可通过面面平行解决,一定要掌握:立体几何中线线平行、线面平行、面面平行是相互转化、相互依存的.求空间角一般是建立空间直角坐标系,用空间向量法求空间角.19.(1)(2)【解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.20.(1)(2)直线恒过定点,详见解析【解析】

(1)依题意由椭圆的简单性质可求出,即得椭圆C的方程;(2)设直线的方程为:,联立直线的方程与椭圆方程可求得点的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论