版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年苏人新版高一数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、函数y=lg(x2-6x+8)的单调递增区间是()
A.(3;+∞)
B.(-∞;3)
C.(4;+∞)
D.(-∞;2)
2、将两个数a=8,b=9交换,使a=9.b=8;则下列语句能实现此功能的是()
A.a=b
b=a
B.t=b
b=a
a=t
C.b=a
a=t
D.a=t
t=b
b=a
3、给定函数:①②③④其中在区间(0,1)上单调递减的函数序号是()A.①③B.②③C.①④D.②④4、若函数f(x)=cos2x+asinx在区间()是减函数,则a的取值范围是()A.(2,4)B.(﹣∞,2]C.(﹣∞,4]D.[4,+∞)5、甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,分别表示甲乙两名运动员这项测试成绩的平均数,s1,s2分别表示甲乙两名运动员这项测试成绩的标准差,则有()A.>s1<s2B.=s1>s2C.=s1=s2D.=s1<s2评卷人得分二、填空题(共5题,共10分)6、已知函数y=cos(πωx+ϕ)的最小正周期为1,则正数ω的值为____.7、如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.则sinα=____.
8、【题文】定义:满足不等式的实数的集合叫做A的B邻域.若的邻域为奇函数的定义域,则的值为____.9、【题文】已知四棱锥的底面ABCD是边长为的正方形,侧棱与底面垂直,若异面直线AC与VD所成的角为且则四棱锥的体积为。
____________.10、函数f(x)=(常数a∈Z)为偶函数且在(0,+∞)是减函数,则f(2)=____评卷人得分三、计算题(共8题,共16分)11、若x2-6x+1=0,则=____.12、已知二次函数f(x)=ax2+bx-3(a≠0)满足f(2)=f(4),则f(6)=____.13、(2010•泉州校级自主招生)直角三角形ABC中,BC=AC,弧DEF圆心为A.已知两阴影面积相等,那么AD:DB=____.14、比较大小:,,则A____B.15、解方程组.16、有一个各条棱长均为a的正四棱锥(底面是正方形,4个侧面是等边三角形的几何体).现用一张正方形包装纸将其完全包住,不能裁剪,可以折叠,那么包装纸的最小边长为____.17、(2010•花垣县校级自主招生)如图所示,∠AOB=40°,OM平分∠AOB,MA⊥OA于A,MB⊥OB于B,则∠MAB的度数为____.18、如图,在直角坐标系内有两个点A(-1,-1),B(2,3),若M为x轴上一点,且使MB-MA最大,求M点的坐标,并说明理由.评卷人得分四、证明题(共4题,共32分)19、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.20、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.21、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.22、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.评卷人得分五、综合题(共3题,共15分)23、如图,直线y=-x+b与两坐标轴分别相交于A;B两点;以OB为直径作⊙C交AB于D,DC的延长线交x轴于E.
(1)写出A、B两点的坐标(用含b的代数式表示);并求tanA的值;
(2)如果AD=4,求b的值;
(3)求证:△EOD∽△EDA,并在(2)的情形下,求出点E的坐标.24、已知平面区域上;坐标x,y满足|x|+|y|≤1
(1)画出满足条件的区域L0;并求出面积S;
(2)对区域L0作一个内切圆M1,然后在M1内作一个内接与此圆与L0相同形状的图形L1,在L1内继续作圆M2;经过无数次后,求所有圆的面积的和.
(提示公式:)25、如图,在矩形ABCD中,M是BC上一动点,DE⊥AM,E为垂足,3AB=2BC,并且AB,BC的长是方程x2-(k-2)x+2k=0的两个根;
(1)求k的值;
(2)当点M离开点B多少距离时,△AED的面积是△DEM面积的3倍?请说明理由.参考答案一、选择题(共5题,共10分)1、C【分析】
由x2-6x+8>0可得x<2或x>4
∵u=x2-6x+8在[4;+∞)单调递增,而y=lgu是增函数。
由复合函数的同增异减的法则可得,函数y=lg(x2-6x+8)的单调递增区间是(4;+∞)
故选C
【解析】【答案】由x2-6x+8>0可得x<2或x>4,要求函数y=lg(x2-6x+8)的单调递增区间,只要求解u=x2-6x+8在定义域上的单调递增区间即可.
2、B【分析】
先把b的值赋给中间变量t;得到t=9;
再把a的值赋给变量b,得到b=8;
把t的值赋给变量a;得到a=9
故选B.
【解析】【答案】要实现两个变量a,b值的交换,需要借助中间量t,先把b的值赋给中间变量t,再把a的值赋给变量b;把t的值赋给变量a.
3、D【分析】试题分析:①幂函数在区间(0,1)上是单调递增,②在区间(0,1)上是单调递减,③=在区间(0,1)上单调递增.考点:函数的单调性.【解析】【答案】D4、B【分析】【解答】解:由f(x)=cos2x+asinx
=﹣2sin2x+asinx+1;
令t=sinx;
则原函数化为y=﹣2t2+at+1.
∵x∈()时f(x)为减函数;
则y=﹣2t2+at+1在t∈(1)上为减函数;
∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.
∴≤解得:a≤2.
∴a的取值范围是(﹣∞;2].
故选:B.
【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.5、D【分析】解:根据茎叶图中的数据;得;
甲运动员成绩的平均数是=(9+14+15+15+16+21)=15;
方差是=[(9-15)2+(14-15)2+2×(15-15)2+(16-15)2+(21-15)2]=
标准差是s1=
乙运动员成绩的平均数是=(8+13+15+15+17+22)=15;
方差是=[(8-15)2+(13-15)2+2×(15-15)2+(17-15)2+(22-15)2]=
标准差是s2=
∴=s1<s2.
故选:D.
计算甲;乙运动员成绩的平均数与方差、标准差;进行比较即可.
本题考查了求数据的平均数与方差、标准差的应用问题,是基础题目.【解析】【答案】D二、填空题(共5题,共10分)6、略
【分析】
因为函数y=cos(πωx+ϕ)的最小正周期为1;
所以T==1;所以正数ω的值为2.
故答案为:2.
【解析】【答案】直接利用三角函数的最小正周期求出正数ω的值即可.
7、略
【分析】
依题意;∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.
在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB×AC×cos∠BAC=122+202-2×12×20×cos120°=784.
解得BC=28.
在△ABC中,由正弦定理,得=即sinα===.
故答案为:
【解析】【答案】由题意推出∠BAC=120°;利用余弦定理求出BC=28,在△ABC中,直接利用正弦定理求出sinα.
8、略
【分析】【解析】依题意可得,即为奇函数的定义域,所以关于原点对称,故解得【解析】【答案】29、略
【分析】【解析】略【解析】【答案】1210、【分析】【解答】解:∵函数f(x)=(常数a∈Z)在(0,+∞)是减函数,∴a2﹣2a﹣3<0;解得﹣1<a<3;
∵a∈Z;∴a=0,1,2;
若a=0,则f(x)=x﹣3;为奇函数,不满足条件.
若a=1,则f(x)=x﹣4;为偶函数,满足条件.
若a=2,则f(x)=x﹣3;为奇函数,不满足条件.
故a=1,f(x)=x﹣4=
则f(2)=
故答案为:
【分析】根据幂函数的定义求出a的值,即可.三、计算题(共8题,共16分)11、略
【分析】【分析】两边都除以x求出x+,两边平方后能求出x2+的值,代入求出即可.【解析】【解答】解:∵x2-6x+1=0;
∴x-6+=0;
∴x+=6;
两边平方得:x2+2•x•+=36;
∴x2+=36-2=34;
∴x2+-1=34-1=33.
故答案为:33.12、略
【分析】【分析】先把x=2代入得出一个方程,再把x=4得出一个方程,根据f(2)=f(4),即可得出f(6)=的值.【解析】【解答】解:∵f(x)=ax2+bx-3;
∴x=2时,f(2)=4a+2b-3;
x=4时,f(4)=16a+4b-3;
∵f(2)=f(4);
∴4a+2b-3=16a+4b-3;
∴6a+b=0;
∵f(6)=36a+6b-3=6(6a+b)-3=-3;
故答案为-3.13、略
【分析】【分析】若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列等式求出AD与DB的比.【解析】【解答】解:设AB=BC=a则AB=a;
∵两阴影面积相等,∴SABC=S扇形ADF
即a2=AD2•π;
∴AD=;
∴AD:DB=AD:(AB-AD)=;
故答案为.14、略
【分析】【分析】利用差减法比较大小.并用字母表示数,再进行分式减法计算.【解析】【解答】解:先设5678901234=a;那么5678901235=a+1;
同样设6789012345=x;那么67890123456=10x+6;
∴A-B=-=;
∵9ax-x=(9a-1)x>0;
∴A-B>0;
∴A>B.
故答案是>.15、略
【分析】【分析】观察方程组的两方程,发现y的系数互为相反数,根据互为相反数的两数之和为0,把两方程左右两边相加即可消去未知数y,得到关于x的一元一次方程,求出方程的解即可得到x的值,把x的值代入原方程组中的任一个方程中即可求出y的值,联立求出的x与y的值即为原方程组的解.【解析】【解答】解:;
①+②得:3x=3;
解得x=1;
把x=1代入①得:y=0;
∴原方程组的解为.16、略
【分析】【分析】本题考查的是四棱锥的侧面展开问题.在解答时,首先要将四棱锥的四个侧面沿底面展开,观察展开的图形易知包装纸的对角线处在什么位置是,包装纸面积最小,进而获得问题的解答.【解析】【解答】解:由题意可知:当正四棱锥沿底面将侧面都展开时如图所示:
分析易知当以PP′为正方形的对角线时;
所需正方形的包装纸的面积最小;此时边长最小.
设此时的正方形边长为x则:(PP′)2=2x2;
又因为PP′=a+2×a=a+a;
∴=2x2;
解得:x=a.
故答案为:x=a.17、略
【分析】【分析】根据已知条件可证Rt△OAM≌Rt△OBM,从而可得MA=MB,∠AMO=∠BMO=70°,MN=MN,可证△AMN≌△BMN,可得∠ANM=∠BNM=90°,故有∠MAB=90°-70°=20°.【解析】【解答】解:∵OM平分∠AOB;
∴∠AOM=∠BOM==20°.
又∵MA⊥OA于A;MB⊥OB于B;
∴MA=MB.
∴Rt△OAM≌Rt△OBM;
∴∠AMO=∠BMO=70°;
∴△AMN≌△BMN;
∴∠ANM=∠BNM=90°;
∴∠MAB=90°-70°=20°.
故本题答案为:20°.18、略
【分析】【分析】作点A关于x轴的对称点A',作直线BA'交x轴于点M,根据轴对称的性质可得出MA'=MA,MB-MA=MB-MA'=A'B,再用待定系数法求出直线A'B的解析式,根据x轴上点的坐标特点即可求出M点的坐标.【解析】【解答】解:作点A关于x轴的对称点A';
作直线BA'交x轴于点M;
由对称性知MA'=MA;MB-MA=MB-MA'=A'B;
若N是x轴上异于M的点;
则NA'=NA;这时NB-NA=NB-NA'<A'B=MB-MA;
所以;点M就是使MB-MA的最大的点,MB-MA的最大值为A'B;
设直线A'B的解析式为y=kx+b;
则解得,,即直线A'B的解析式为;
令y=0,得,故M点的坐标为(;0).
故答案为:(,0).四、证明题(共4题,共32分)19、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.20、略
【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
从而四边形OBFC为平行四边形;
所以BM=MC.21、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.22、略
【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四边形GBFC是平行四边形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵过A;G的圆与BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四点共圆;
∴GA;GF=GC•GD;
即GA2=GC•GD.五、综合题(共3题,共15分)23、略
【分析】【分析】(1)在解析式中分别令x=0与y=0;即可求得直线与y轴,x轴的交点坐标,即可求得OA,OB的长度,进而求得正切值;
(2)利用切割线定理,可以得到OA2=AD•AB,据此即可得到一个关于b的方程,从而求得b的值;
(3)利用两角对应相等的两个三角形相似即可证得两个三角形相似.【解析】【解答】解:(1)∵当x=0时,y=b,当y=0时,x=2b;
∴A(2b,0),B(0,b)
∴tanA===;
(2)AB===b
由OA2=AD•AB,得(2b)2=4•b,解得b=5;
(3)∵OB是直径;
∴∠BDO=90°;
则∠ODA=90°
∴∠EOC=∠ODA=90°;
又∵OC=CD
∴∠COD=∠CDO
∴∠COD+∠EOC=∠CDO+∠ODA
∴∠EOD=∠EDA
又∵∠DEA=∠OED
∴△EOD∽△EDA
D点作y轴的垂线交y轴于H;DF⊥AE与F.
∵A(2b,0),B(0,b)
∴OA=10;OB=5.
∴AB=5;
∵DF∥OB
∴===;
∴AF=OA=8;
∴OF=OA-AF=10-8=2;
∴DH=OF=2;
∵Rt△BHD中,BD2=BH2+HD2
∴BH==1;
∴CH=-1=;
∵DH∥OE;
∴=
∴OE=.
∴E的坐标是:(-,0).24、略
【分析】【分析】(1)根据绝对值的性质去掉绝对值号,作出|x|+|y|≤1的线性规划区域即可得到区域L0;然后根据正方形的面积等于对角线乘积的一半进行求解即可;
(2)求出M1、M2的面积,然后根据求解规律,后一个圆得到面积等于前一个圆的面积的,然后列式,再根据等比数列的求和公式求解即可.【解析】【解答】解:(1)如图;|x|+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 洗浴中心的安全与消防设施装修要求
- 2025年校园环保设施承包经营合同4篇
- 二零二五版跨境电商平台股权收购合同模板3篇
- 二零二五年建筑用烧结砖及标准砖购销及质量检测合同3篇
- 环境因素对孕妇健康的影响及应对策略
- 2025年铲车租赁与施工进度协调合同3篇
- 中医医院工会2024年度活动合同版B版
- 2025年度城市绿化工程玻璃钢化粪池采购合同3篇
- 2025版毛竹山林资源保护与生态旅游开发合同正本4篇
- 2025年度智能家电产品买卖试用合同范本4篇
- 2023-2024学年度人教版一年级语文上册寒假作业
- 软件运维考核指标
- 空气动力学仿真技术:格子玻尔兹曼方法(LBM)简介
- 对表达方式进行选择与运用
- GB/T 18488-2024电动汽车用驱动电机系统
- 投资固定分红协议
- 高二物理题库及答案
- 职业发展展示园林
- 2024版医疗安全不良事件培训讲稿
- 中学英语教学设计PPT完整全套教学课件
- 移动商务内容运营(吴洪贵)项目五 运营效果监测
评论
0/150
提交评论