2023届九年级上期末数学摸底考试试题_第1页
2023届九年级上期末数学摸底考试试题_第2页
2023届九年级上期末数学摸底考试试题_第3页
2023届九年级上期末数学摸底考试试题_第4页
2023届九年级上期末数学摸底考试试题_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届九年级上学期期末数学摸底考试试题一.选择题(每小题4分,共10小题,满分40分,)1.下列根式是最简二次根式的是()A. B. C. D.2.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件 B.某种彩票的中奖率为,说明每买1000张彩票,一定有一张中奖 C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为 D.“概率为1的事件”是必然事件3.用配方法解方程x2﹣x﹣1=0时,应将其变形为()A.(x﹣)2= B.(x+)2= C.(x﹣)2=0 D.(x﹣)2=4.在某个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中 B.科比罚球投篮2次,不一定全部命中 C.科比罚球投篮1次,命中的可能性较大 D.科比罚球投篮1次,不命中的可能性较小5.某商场今年3月份的营业额为400万元,5月份的营业额达到633.6万元,若设商场3月份到5月份营业额的月平均增长率为x,则下面列出的方程中正确的是()A.400(1+x)2=633.6 B.400(1+2x)2=6336 C.400×(1+2x)2=63.6 D.400×(1+x)2=633.6+4006.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.8.已知=(a≠0,b≠0),下列变形错误的是()A.= B.2a=3b C.= D.3a=2b9.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B. C. D.10.下列计算正确的是()A.=3 B.=﹣3 C.=±3 D.(﹣)2=3二.填空题(共6小题,满分24分,每小题4分)11.若二次根式在实数范围内有意义,则x的取值范围是.12.如图,长方形ABCD中,AB=4cm,BC=3cm,点E是CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E运动,最终到达点E.若点P运动的时间为x秒,那么当x=时,△APE的面积等于5.13.已知一个斜坡的坡度i=1:,那么该斜坡的坡角的度数是度.14.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′,B′;点A到原点O的距离是.15.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.16.如图,在矩形纸片ABCD中,AB=3,BC=4,点M、N是边AD、BC上的点,现将这张矩形纸片沿MN折叠,使点B落在点E处,折痕与对角线BD的交点为点F,若△FDE是等腰三角形,则FB=.三.解答题(共9小题,满分86分)17.(8分)计算(1)5+﹣+(2)+﹣()0(3)﹣+18.(8分)阅读下面的材料并解答问题:例:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.仿照上例解方程:(x2﹣2x)2+(x2﹣2x)﹣6=019.(8分)已知x=﹣1,求x2+3x﹣1的值.20.(8分)某山区学校为开发学生特长,培养兴趣爱好,准备开设“第二课堂培训班”,每周进行一次.拟开设科目有:A.数学兴趣,B.古诗词欣赏;C.英语特长;D.艺术赏析;E.竞技体育等五类.学校对学生进行了抽样调查(每人只能选择一项),并将调查结果绘制成图1和图2所示的两个不完整统计图.根据以上信息,解答下列问题:(1)求x的值,并将图1补充完整;(2)在图2中,D科目所占扇形圆心角的度数为°;(3)为提高学生对C、E科目的了解与关注,学校准备从选C、E科目的学生中随机选出2名出黑板报进行宣传,请你用列表法或树状图法求这2名同学选择不同科目的概率.21.(8分)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.22.(10分)某地2015年为做好“精准扶贫”工作,投入资金2000万元用于异地安置,并规划投入资金逐年增加,2017年投入资金2880万元,求2015年到2017年该地投入异地安置资金的年平均增长率.23.(10分)如图,在△ABC中,AD是BC边上的高,tanC=,AC=3,AB=4,求△ABC的周长.24.(12分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?25.(14分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)根据图象直接写出kx+b<的x的取值范围;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.

参考答案一.选择题1.解:(A)原式=,故A不是最简二次根式;(C)原式,故C不是最简二次根式;(D)原式=2,故D不是最简二次根式;故选:B.2.解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,此选项错误;B、某种彩票的中奖率为,说明每买1000张彩票,可能有一张中奖,此选项错误;C、抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为,此选项错误;D、“概率为1的事件”是必然事件,此选项正确;故选:D.3.解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴x2﹣x+=1+,∴(x﹣)2=.故选:D.4.解:科比罚球投篮的命中率大约是83.3%,科比罚球投篮2次,不一定全部命中,A选项错误、B选项正确;科比罚球投篮1次,命中的可能性较大、不命中的可能性较小,C、D选项说法正确;故选:A.5.解:设平均每月的增长率为x,400(1+x)2=633.6.故选:A.6.解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.7.解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.8.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.9.解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.10.解:A、=,错误;B、=3,错误;C、=3,错误;D、(﹣)2=3,正确;故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.12.解:①如图1,当P在AB上时,∵△APE的面积等于5,∴x•3=5,x=;②当P在BC上时,∵△APE的面积等于5,∴S矩形ABCD﹣S△CPE﹣S△ADE﹣S△ABP=5,∴3×4﹣(3+4﹣x)×2﹣×2×3﹣×4×(x﹣4)=5,x=5;③当P在CE上时,∴(4+3+2﹣x)×3=5,x=<3+4+2,此时不符合;故答案为:或5.13.解:∵tanα=1:=,∴坡角=30°.14.解:∵A(m,m),B(2n,n),而位似中心为原点,相似比为,∴A′(m,m),B′(n,n);点A到原点O的距离==m.故答案为(m,m),(n,n);m.15.解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:201816.解:①如图1中,当点E与C重合时,BF﹣DF=CF=BD==.②如图2中,当DF=DE时,设BF=x,则DF=DE=5﹣x,作EH⊥BD于H,则DH=(5﹣x),HE=(5﹣x),在Rt△EFH中,∵EF2=HF2+HE2,∴x2=[]2+[(5﹣x)]2,解得x=10﹣20(负根已经舍弃).③如图3中,当EF=DE时,设BF=x,则EF=DE=x,∵EF=ED,EH⊥DF,∴DH=HF,DF=2DH,∴5﹣x=2×x,∴x=,故答案为或或.三.解答题(共9小题,满分86分)17.解:(1)原式=5×+×2﹣×+3=+﹣+3=;(2)原式=+1+3﹣1=4;(3)原式=4﹣×2+2=4﹣+2=4+.18.解:设m=x2﹣2x,于是原方程可变形为m2+m﹣6=0,则(m﹣2)(m+3)=0,解得:m=2或m=﹣3;当m=2时,x2﹣2x=2,即x2﹣2x﹣2=0,解得:x=1±;当m=﹣3时,x2﹣2x=﹣3,即x2﹣2x+3=0,因为△=4﹣4×1×3=﹣8<0,所以该方程无解.∴原方程有四个根:x1=1+,x2=1﹣.19.解:∵x=﹣1,∴x2+3x﹣1==2﹣2+1+3﹣3﹣1=﹣1+.20.解:(1)∵被调查人数为16÷40%=40人,∴C科目的人数为40×5%=2,∴B科目的人数为40﹣(16+2+8+2)=12人,则x%=×100%=30%,补全图1如图所示:(2)在图2中,D科目所占扇形圆心角的度数为360°×=72°,故答案为:72;(3)画树状图如下:由树状图知,共有12种等可能结果,其中2名同学选择不同科目的情况有8种,所以2名同学选择不同科目的概率为=.21.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=322.解:设2015年到2017年该地投入异地安置资金的年平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:2015年到2017年该地投入异地安置资金的年平均增长率为20%.23.解:在Rt△ADC中,tanC==,设AD=k,CD=2k,AC==k,∵AC=3,∴k=3,解得k=3,∴AD=3,CD=6,在Rt△ABD中,BD===,∴△ABC的周长=AB+AC+BD+CD=4+3++6=10+3+.24.解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.25.解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),将A(﹣4,0)与P(4,2)代入y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论