2025高考数学一轮复习-第10章-第1节 分类加法计数原理与分步乘法计数原理【课件】_第1页
2025高考数学一轮复习-第10章-第1节 分类加法计数原理与分步乘法计数原理【课件】_第2页
2025高考数学一轮复习-第10章-第1节 分类加法计数原理与分步乘法计数原理【课件】_第3页
2025高考数学一轮复习-第10章-第1节 分类加法计数原理与分步乘法计数原理【课件】_第4页
2025高考数学一轮复习-第10章-第1节 分类加法计数原理与分步乘法计数原理【课件】_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理1.理解分类加法计数原理、分步乘法计数原理及其意义.2.能解决简单的实际问题.目

录CONTENTS知识诊断自测01考点聚焦突破02课时分层精练03知识诊断自测1ZHISHIZHENDUANZICE1.分类加法计数原理

完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=________种不同的方法.2.分步乘法计数原理

完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=________种不同的方法.m+nm×n3.分类加法和分步乘法计数原理的区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成了才算完成这件事.分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础,并贯穿其始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于其中一类.(2)分步乘法计数原理中,各个步骤中的方法相互依存,步与步之间“相互独立,分步完成”.常用结论与微点提醒1.思考辨析(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(

)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(

)(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(

)×解析分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1)不正确.√√2.(选修三P5T1改编)(1)一项工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是______; (2)从A村去B村的道路有3条,从B村去C村的道路有2条,则从A村经B村去C村,不同路线的条数是________.96解析(1)不同的选法共有5+4=9种方法.(2)从A村去B村有3种走法,由B村去C村有2种走法,根据乘法原理可得3×2=6(种).

3.如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有________种.13解析电路不通可能是1个或多个焊接点脱落,问题比较复杂,但电路通的情况却只有3种,即2或3脱落或全不脱落,每个焊接点有脱落与不脱落两种情况,故共有24-3=13(种)情况.4.3个班分别从5个风景点中选择一处游览,不同的选法有________种.125解析因为第1、第2、第3个班各有5种选法,由分步乘法计数原理,可得不同的选法有5×5×5=125(种).考点聚焦突破2KAODIANJUJIAOTUPO考点一分类加法计数原理例1(1)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有(

) A.4种 B.10种

C.18种

D.20种B解析赠送1本画册,3本集邮册,需从4人中选取1人赠送画册,其余赠送集邮册,有4种方法;赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有6种方法.由分类加法计数原理可知,不同的赠送方法共有4+6=10(种).(2)如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.240解析若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),……,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数共有2+6+12+20+30+42+56+72=240(个).感悟提升使用分类加法计数原理的两个注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.训练1(1)集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是(

)A.9 B.14 C.15 D.21B解析当x=2时,x≠y,点的个数为1×7=7.当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).(2)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定______个平面.13解析异面直线a与异面直线b上的8个点中的任意一个点都可以构成一个平面;异面直线b与异面直线a上的5个点中的任意一个点都可以构成一个平面,∴共可以确定8+5=13个平面.考点二分步乘法计数原理例2

(多选)(2024·合肥调研)现安排高二年级A,B,C三名同学到甲、乙、丙、丁四个工厂进行社会实践,每名同学只能选择一个工厂,且允许多人选择同一个工厂,则下列说法正确的是(

) A.共有43种不同的安排方法 B.若甲工厂必须有同学去,则不同的安排方法有37种 C.若A同学必须去甲工厂,则不同的安排方法有12种 D.若三名同学所选工厂各不相同,则不同的安排方法有24种ABD解析对于A,A,B,C三名同学到甲、乙、丙、丁四个工厂进行社会实践,每个学生有4种选法,则三个学生有4×4×4=43(种)选法,故A正确;对于B,三人到4个工厂,有43=64(种)情况,其中甲工厂没有人去,即三人全部到乙、丙、丁三个工厂的情况有33=27(种),则甲工厂必须有同学去的安排方法有64-27=37(种),故B正确;对于C,若同学A必须去甲工厂,剩下2名同学安排到4个工厂即可,有42=16(种)安排方法,故C错误;对于D,若三名同学所选工厂各不相同,有4×3×2=24(种)安排方法,故D正确.感悟提升1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.训练2(1)为响应国家“节约粮食”的号召,某同学决定在某食堂提供的2种主食、3种素菜、2种大荤、4种小荤中选取一种主食、一种素菜、一种荤菜作为今日伙食,并在用餐时积极践行“光盘行动”,则不同的选取方法有(

)A.48种

B.36种 C.24种

D.12种B解析由题意可知,分三步完成:第一步,从2种主食中任选一种有2种选法;第二步,从3种素菜中任选一种有3种选法;第三步,从6种荤菜中任选一种有6种选法,根据分步乘法计数原理,共有2×3×6=36种不同的选取方法.C解析将6本不同的书放到5个不同的盒子里,每本书都有5种放法,根据分步乘法计数原理可得不同放法为56种.考点三两个计数原理的综合角度1与数字有关的问题例3

用0,1,2,3,4,5,6这7个数字可以组成________个无重复数字的四位偶数(用数字作答).420解析要完成的“一件事”为组成无重复数字的四位偶数,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中四个数字不重复,因此应先分类,再分步.第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,再依次取百位、十位数字.共有3×4×5×4=240(种)取法.第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除首位数字的任意一个偶数数字,再依次取百位、十位数字.共有3×3×5×4=180(种)取法,共可以组成240+180=420(个)无重复数字的四位偶数.角度2与几何有关的问题例4

如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是(

) A.60

B.48

C.36 D.24B解析一个长方体的面可以和它相对的面上的4条棱和两条对角线组成6个“平行线面组”,一共有6个面,共有6×6=36(个).长方体的每个对角面有2个“平行线面组”,共有6个对角面,一共有6×2=12(个).根据分类加法计数原理知共有36+12=48(个).角度3涂色问题例5

如图,a省分别与b,c,d,e四省交界,且b,c,d互不交界,在地图上分别给各省地域涂色,要求相邻省涂不同色,现有5种不同颜色可供选用,则不同的涂色方案种数为(

) A.480

B.600

C.720

D.840C解析依题意,按c与d涂的颜色相同和不同分成两类:若c与d涂同色,先涂d有5种方法,再涂a有4种方法,涂c有1种方法,涂e有3种方法,最后涂b有3种方法,由分步乘法计数原理得到不同的涂色方案有5×4×1×3×3=180(种),若c与d涂不同色,先涂d有5种方法,再涂a有4种方法,涂c有3种方法,涂e,b也各有3种方法,由分步乘法计数原理得到不同的涂色方案有5×4×3×3×3=540(种),所以,由分类加法计数原理得不同的涂色方案共有180+540=720(种).感悟提升1.在综合应用两个原理解决问题时应注意:(1)一般是先分类再分步.在分步时可能又用到分类加法计数原理.(2)对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.2.解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.训练3(1)有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是(

)A.14 B.23 C.48 D.120C解析分两步:第1步,取多面体,有5+3=8(种)不同的取法;第2步,取旋转体,有4+2=6(种)不同的取法.所以不同的取法种数是8×6=48.(2)(2024·杭州调研)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(

)A.243 B.252 C.261 D.279B解析0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),故有重复数字的三位数有900-648=252(个).(3)(2024·临汾调考)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法有(

)A.24种

B.48种

C.72种

D.96种C解析分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D有1种,有4×3×2×1=24(种);②A,C同色,先涂A,C有4种,再涂E有3种,B,D各有2种,有4×3×2×2=48(种).故不同的涂色方法有48+24=72(种).课时分层精练3KESHIFENCENGJINGLIAN1.每天从甲地到乙地的飞机有5班,高铁有10趟,动车有6趟,公共汽车有12班.某人某天从甲地前往乙地,则其出行方案共有(

) A.22种

B.33种 C.300种 D.3600种B解析从甲地到乙地不同的方案数为5+10+6+12=33.2.将3张不同的冬奥会门票分给10名同学中的3人,每人1张,不同的分法种数为(

) A.720

B.240 C.120 D.60A解析可分三步:第一步,第1张门票有10种不同的分法;第二步,第2张门票有9种不同的分法;第三步,第3张门票有8种不同的分法,由分步乘法计数原理得,共有10×9×8=720种不同分法.3.某省新高考采用“3+1+2”模式:“3”为全国统考科目语文、数学、外语,所有学生必考;“1”为首选科目,考生须在物理、历史科目中选择1个科目;“2”为再选科目,考生可在思想政治、地理、化学、生物4个科目中选择2个科目.已知小明同学必选化学,那么他可选择的方案共有(

) A.4种

B.6种 C.8种

D.12种B解析根据题意得,分两步进行分析:①小明必选化学,则必须在思想政治、地理、生物中再选出1个科目,选法有3种;②小明在物理、历史科目中选出1个,选法有2种.由分步乘法计数原理知,小明可选择的方案共有3×2=6(种).4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为(

) A.3

B.4 C.6 D.8D解析以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这4个数列的顺序颠倒,又得到另外的4个数列,∴所求的数列共有2×(2+1+1)=8(个).5.中国古代将物质属性分为“金、木、土、水、火”五种,其相互关系是“金克木,木克土,土克水,水克火,火克金”.将五种不同属性的物质任意排成一列,则属性相克的两种物质不相邻的排法种数为(

) A.8

B.10

C.15 D.20B解析由题意知,可看作五个位置排列五个元素,第一个位置有5种排列方法,不妨假设是金,则第二个位置只能从土与水两者中选一种排放,有2种选择,不妨假设排的是水,则第三个位置只能排木,第四个位置只能排火,第五个位置只能排土,因此,总的排列方法种数为5×2×1×1×1=10.6.如图所示,某景观湖内有四个人工小岛,为方便游客登岛观赏美景,现计划设计三座景观桥连通四个小岛,每座桥只能连通两个小岛,且每个小岛最多有两座桥连接,则设计方案的种数最多是(

) A.8 B.12 C.16 D.24B解析四个人工小岛分别记为A,B,C,D,对A分有一座桥相连和两座桥相连两种情况,用“—”表示桥.①当A只有一座桥相连时,有A—B—C—D,A—B—D—C,A—C—B—D,A—C—D—B,A—D—B—C,A—D—C—B,共6种方法;②当A有两座桥相连时,有C—A—B—D,D—A—B—C,D—A—C—B,B—A—C—D,B—A—D—C,C—A—D—B,共6种方法.故设计方案最多有6+6=12(种).7.现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是(

) A.120

B.140

C.240 D.260D解析由题意,先涂A处,有5种涂法;再涂B处4种涂法;第三步涂C,若C与A同色,则D有4种涂法;若C与A不同色,则D有3种涂法,由此得不同的着色方案有5×4×(1×4+3×3)=260(种).8.(多选)现有4个数学课外兴趣小组,第一、二、三、四组分别有7人、8人、9人、10人,则下列说法正确的是(

) A.选1人为负责人的选法种数为34 B.每组选1名组长的选法种数为5400 C.若推选2人发言,这2人需来自不同的小组,则不同的选法种数为420 D.若另有3名学生加入这4个小组,加入的小组可自由选择,且第一组必须有人选,则不同的选法有37种AD解析对于A,4个数学课外兴趣小组共有7+8+9+10=34(人),故选1人为负责人的选法共有34种,A正确;对于B,分四步:第一、二、三、四步分别为从第一、二、三、四组中各选1名组长,所以不同的选法共有7×8×9×10=5040(种),B错误;对于C,分六类:从第一、二组中各选1人,有7×8种不同的选法;从第一、三组中各选1人,有7×9种不同的选法;从第一、四组中各选1人,有7×10种不同的选法;从第二、三组中各选1人,有8×9种不同的选法;从第二、四组中各选1人,有8×10种不同的选法;从第三、四组中各选1人,有9×10种不同的选法.所以不同的选法共有7×8+7×9+7×10+8×9+8×10+9×10=431(种),C错误;对于D,若不考虑限制条件,每个人都有4种选法,共有43=64(种)选法,其中第一组没有人选,每个人都有3种选法,共有33=27(种)选法,所以不同的选法有64-27=37(种),D正确.9.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数的个数是________.36解析因为a+bi为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.10.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后的项数为________.60解析从第一个括号中选一个字母有3种方法,从第二个括号中选一个字母有4种方法,从第三个括号中选一个字母有5种方法,故根据分步乘法计数原理可知共有N=3×4×5=60(项).11.4张卡片的正、反面分别写有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成________个不同的三位数.168解析要组成三位数,根据百位、十位、个位应分三步:第一步:百位可放8-1=7个数;第二步:十位可放6个数;第三步:个位可放4个数.故由分步乘法计数原理,得共可组成7×6×4=168(个)不同的三位数.12.(2024·青岛调研)甲与其他四位同事各有一辆私家车,车牌尾数分别是9,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为________.80解析5日至9日,日期尾数分别为5,6,7,8,9,有3天是奇数日,2天是偶数日.第一步,安排偶数日出行,每天都有2种选择,共有2×2=4(种)用车方案;第二步,安排奇数日出行,分两类,第一类,选1天安排甲的车,另外2天安排其他车,有3×2×2=12(种)用车方案,第二类,不安排甲的车,每天都有2种选择,共有23=8(种)用车方案,共计12+8=20(种)用车方案.根据分步乘法计数原理可知,不同的用车方案种数为4×20=80.13.如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k-j=3且j-i=4,则称ai,aj,ak为原位大三和弦;若k-j=4且j-i=3,则称ai,aj,ak为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为(

)C解析满足条件1≤i<j<k≤12,k-j=3且j-i=4的(i,j,k)有(1,5,8),(2,6,9),(3,7,10),(4,8,11),(5,9,12),共5个;满足条件1≤i<j<k≤12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论