《优化探究》2022届高三数学人教A版理科一轮复习提素能高效训练-第7章-立体几何-7-2_第1页
《优化探究》2022届高三数学人教A版理科一轮复习提素能高效训练-第7章-立体几何-7-2_第2页
《优化探究》2022届高三数学人教A版理科一轮复习提素能高效训练-第7章-立体几何-7-2_第3页
《优化探究》2022届高三数学人教A版理科一轮复习提素能高效训练-第7章-立体几何-7-2_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

A组考点基础演练一、选择题1.(2022年高考重庆卷)某几何体的三视图如图所示,则该几何体的体积为()A.12B.18C.24 D.30答案:C2.(2022年高考辽宁卷)某几何体三视图如图所示,则该几何体的体积为()A.8-2π B.8-πC.8-eq\f(π,2) D.8-eq\f(π,4)解析:该几何体为一正方体挖去了两个eq\f(1,4)圆柱,则体积V=23-2×eq\f(1,4)×π×12×2=8-π.答案:B3.某几何体的三视图如图所示,则它的侧面积为()A.12eq\r(5) B.24eq\r(2)C.24 D.12eq\r(3)解析:由三视图知该几何体为一正四棱台,侧面梯形的上底长为2,下底长为4,高为正视图梯形的腰长,即为eq\r(5),则棱台的侧面积为eq\f(2+4×\r(5),2)×4=12eq\r(5),故选A.答案:A4.某几何体的三视图如图所示,则该几何体的体积为()A.eq\f(2π,3) B.πC.eq\f(4π,3) D.12π解析:由三视图可知该几何体的直观图为一个圆柱内挖去两个与圆柱同底的半球,所以该几何体的体积V=V柱-2V半球=π×12×2-2×eq\f(1,2)×eq\f(4,3)π×13=eq\f(2,3)π,选A.答案:A5.如图,直三棱柱ABC­A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1AA.2 B.1C.eq\r(2) D.eq\f(\r(2),2)解析:连接BC1,B1C,交于点O,则O为面BCC1B1的中心.由题意知,球心为侧面BCC1B1的中点O,BC为截面圆的直径,所以∠BAC=90°,则△ABC的外接圆圆心N位于BC的中点,同理,△A1B1C1的外接圆圆心M位于B1C1的中点,设正方形BCC1B1的边长为x,在Rt△OMC1中,OM=eq\f(x,2),MC1=eq\f(x,2),OC1=R=1(R为球的半径),所以eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x,2)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x,2)))2=1,即x=eq\r(2),即AB=AC=1,所以侧面ABB1A1的面积为eq\r(2)×1=eq\r(2),选C.答案:C二、填空题6.(2021年高考福建卷)已知某一多面体内接于球构成一个简洁组合体,假如该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:由三视图知组合体为球内接正方体,正方体的棱长为2,若球半径为R,则2R=2eq\r(3),∴R=eq\r(3).∴S球表=4πR2=4π×3=12π.答案:12π7.(2022年高考江苏卷)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2.若它们的侧面积相等,且eq\f(S1,S2)=eq\f(9,4),则eq\f(V1,V2)的值是________.解析:设甲、乙两圆柱的高分别为h1,h2,底面半径分别为r1,r2,∴2πr1h1=2πr2h2,即eq\f(h1,h2)=eq\f(r2,r1),而eq\f(S1,S2)=eq\f(9,4),∴eq\f(πr\o\al(2,3),πr\o\al(2,2))=eq\f(9,4),∴eq\f(r1,r2)=eq\f(3,2),∴eq\f(h1,r2)=eq\f(2,3),∴eq\f(V1,V2)=eq\f(πr\o\al(2,1)h1,πr\o\al(2,2)h2)=eq\f(3,2).答案:eq\f(3,2)8.已知三棱柱ABC­A1B1C1的侧棱垂直于底面,各顶点都在同一球面上.若AA1=2,AB=2,AC=1,∠BAC解析:由题意知该三棱柱为直棱柱,设△ABC的外接圆的圆心为M,半径为r,△A1B1C1的外接圆的圆心为M1,则该三棱柱的外接球的球心确定在MM1的中点处,设为O,连接OA,MA,则OA2=MA2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)MM1))2,即R2=r2+1,在△ABC中,由余弦定理知BC=eq\r(3),由正弦定理知,2r=eq\f(BC,sin∠BAC)=eq\f(\r(3),sin60°)=2,即r=1,所以R2=2.故此球的表面积为S=4πR2=8π.答案:8π三、解答题9.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)假如点P,Q在正视图中所示位置:P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.解析:(1)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S圆锥侧=eq\f(1,2)(2πa)·(eq\r(2)a)=eq\r(2)πa2,S圆柱侧=(2πa)·(2a)=4πa2,S圆柱底=πa2所以S表面=eq\r(2)πa2+4πa2+πa2=(eq\r(2)+5)πa2.(2)沿P点与Q点所在母线剪开圆柱侧面,如图.则PQ=eq\r(AP2+AQ2)=eq\r(a2+πa2)=aeq\r(1+π2),所以从P点到Q点在侧面上的最短路径的长为aeq\r(1+π2).10.如图所示的几何体为一简洁组合体,其底面ABCD为矩形,PD⊥平面ABCD,EC∥PD且PD=2EC.(1)若点N为线段PB的中点,求证:NE⊥PD;(2)若矩形ABCD的周长为10,PD=2,求该组合体体积的最大值.解析:(1)证明:如图,连接AC、BD交于点F,则F为BD的中点,连接NF.∵N为线段PB的中点,∴NF∥PD且NF=eq\f(1,2)PD,又EC∥PD且EC=eq\f(1,2)PD,∴NF綊EC,∴四边形NFCE是平行四边形,∴NE∥FC,即NE∥AC,又PD⊥平面ABCD,AC⊂平面ABCD,∴PD⊥AC.又NE∥AC,∴NE⊥PD.(2)该简洁组合体可看成是由三棱锥P-ABD和四棱锥B-PDCE组合而成的.∵矩形ABCD的周长为10,设AB=x(0<x<5),则CD=x,AD=BC=5-x.∴VP-ABD=eq\f(1,3)S△ABD·PD=eq\f(1,3)×eq\f(1,2)×AD×AB×PD=eq\f(1,3)(5-x)x.∵PD⊥平面ABCD,BC⊂平面ABCD,∴PD⊥BC.又∵BC⊥CD,PD∩CD=D,∴BC⊥平面PDCE,∴VB-PDCE=eq\f(1,3)×eq\f(1,2)×(CE+PD)×CD×BC=eq\f(1,3)×eq\f(1,2)×3·x·(5-x)=eq\f(1,2)(5-x)x,∴简洁组合体的体积为V=VP-ABD+VB-PDCE=eq\f(5,6)x(5-x)=-eq\f(5,6)x(x-5)=-eq\f(5,6)eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(5,2)))2+eq\f(125,24).∵0<x<5,∴当x=eq\f(5,2)时,该简洁组合体的体积最大,最大值为eq\f(125,24).B组高考题型专练1.(2022年高考四川卷)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是()(锥体体积公式:V=eq\f(1,3)Sh,其中S为底面面积,h为高)A.3 B.2C.eq\r(3) D.1解析:由侧视图知高为eq\r(3),由俯视图知底面积S=eq\f(1,2)×2×eq\r(3)=eq\r(3),故三棱锥的体积V=eq\f(1,3)×eq\r(3)×eq\r(3)=1.答案:D2.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.eq\f(17,27) B.eq\f(5,9)C.eq\f(10,27) D.eq\f(1,3)解析:圆柱的体积为π×32×6=54π,该零件的体积为π×22×4+π×32×2=34π,则切削掉部分的体积与原来毛坯体积的比值为eq\f(54π-34π,54π)=eq\f(10,27).答案:C3.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2π D.π解析:由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S=2πrh=2π×1×1=2π.答案:C4.(2022年高考新课标全国卷Ⅱ)正三棱柱ABC­A1B1C1的底面边长为2,侧棱长为eq\r(3),D为BC中点,则三棱锥A­B1DC1的体积为()A.3 B.eq\f(3,2)C.1 D.eq\f(\r(3),2)答案:C5.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为()A.eq\f(81π,4) B.16πC.9π D.eq\f(27π,4)解析:设球的半径

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论