下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时圆的一般方程1.在把握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,把握方程x2+y2+Dx+Ey+F=0表示圆的条件,由圆的一般方程确定圆的圆心和半径.2.能通过配方等手段将圆的一般方程化为圆的标准方程,会用待定系数法求圆的方程.3.培育同学发觉问题、解决问题的力气.重点:圆的一般方程的代数特征;一般方程与标准方程间的互化;依据已知条件确定方程中的系数D、E、F.难点:点的轨迹方程的求法.同学们,我们在上一节课学习了圆的定义和圆的标准方程,以及用待定系数法求圆的标准方程.我们把圆的标准方程(x-a)2+(y-b)2=r2,开放后得到了x2+y2-2ax-2by+a2+b2-r2=0,本节课我们就来学习下这个方程的特点.
问题1:对于方程x2+y2+Dx+Ey+F=0,配方可得(x+)2+(y+)2=.
(1)当D2+E2-4F>0时,与圆的标准方程作比较,可看出方程表示以(-,-)为圆心,
(2)当D2+E2-4F=0时,方程只有一个解,x=-,y=-,它表示一个点(-,(3)当D2+E2-4F<0时,方程没有实数解,它不表示任何图形.因此,当D2+E2-4F>0时,x2+y2+Dx+Ey+F=0表示一个圆,叫作圆的一般方程的特点:x2和y2的系数相同,没有xy这样的二次项,圆的一般方程中有三个待定系数D、E、F,因此只要求出这三个系数,圆的方程就明确了;圆的一般方程是一种特殊的二元二次方程,代数特征明显,圆的一般方程也指出了圆心坐标与半径大小,几何特征明显.
问题2:设点M(x0,y0),依据圆的一般方程得到坐标平面内的点和圆的关系如下:(1)点在圆外⇔
++Dx0+Ey0+F>0;(2)点在圆上⇔
++Dx0+Ey0+F=0;(3)点在圆内⇔
+
+Dx0+Ey0+F<0.
问题3:用待定系数法求圆的一般方程的步骤是:(1)设出圆的一般方程;(2)依据题意列出关于D、E、F的方程组;(3)解出D、E、F,代入一般方程.
问题4:求轨迹方程的一般步骤(1)建立适当的坐标系,用有序数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件的点M的集合;
(3)列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.总结为:建系→设标→列式→化简→结果.(1)有关圆的弦长的求法:已知直线的斜率为k,直线与圆C相交于A(x1,y1),B(x2,y2)两点,点C到直线的距离为d,圆的半径为r.(法一)代数法:弦长|AB|=|x2-x1|=·;(法二)几何法:弦长|AB|=2.(2)有关弦的中点问题:圆心与弦的中点连线和已知弦所在直线垂直,利用这条性质可确定某些等量关系.1.方程x2+y2+4x-2y+5m=0表示圆的条件是()A.<m<1B.m>1C.m< D.m<1【解析】圆的方程条件为42+22-4×5m>0⇒m<1【答案】D2.方程x2+y2-6y+1=0所表示的圆的圆心坐标和半径分别为().A.(3,0),8 B.(0,-3),8C.(0,3),2 D.(3,0),2【解析】方程可变形为:x2+(y-3)2=8.【答案】C3.圆的方程为x2+y2-8x=0,则圆心为,半径为.
【答案】(4,0)44.圆C通过不同的三点P(k,0)、Q(2,0)、R(0,1),已知圆C在点P处的切线斜率为1,试求圆C的方程.【解析】设圆C的方程为x2+y2+Dx+Ey+F=0,则k、2为x2+Dx+F=0的两根,∴k+2=-D,2k=F,即D=-(k+2),F=2k.又圆过点R(0,1),故1+E+F=0,∴E=-2k-1.故所求圆的方程为x2+y2-(k+2)x-(2k+1)y+2k=0,圆心坐标为(,).∵圆C在点P处的切线斜率为1,∴kCP=-1=,∴k=-3.∴D=1,E=5,F=-6.∴所求圆C的方程为x2+y2+x+5y-6=0.圆的一般方程的概念辨析若方程ax2+ay2-4(a-1)x+4y=0表示圆,求实数a的取值范围,并求出其中半径最小的圆的标准方程.【方法指导】对于可化为x2+y2+Dx+Ey+F=0形式的二元二次方程,仅当D2+E2-4F>0时,方程表示一个圆,【解析】(法一)当a=0时,明显不符合题意,当a≠0时,方程可写为x2+y2-x+y=0.∴D=-,E=,F=0,由D2+E2-4F=(a2-2a+2)>0知,当a∈R且a又半径r==2=2,∴当a=2时,rmin=,此时圆的方程为x2+y2-2x+2y=0.(法二)原方程可化为[x-]2+(y+)2=.∵a2-2a+2>0,∴当a≠0时,又r===≥,∴当a=2时,rmin=,∴半径最小的圆的标准方程为(x-1)2+(y+1)2=2.【小结】解答此类问题要留意所给的方程是否为x2+y2+Dx+Ey+F=0这种形式,若不是,则要化成一般方程形式再求解.求圆的一般方程已知圆经过三点:A(1,4),B(-2,3),C(4,-5),求圆的方程.【方法指导】设出圆的一般方程,把A、B、C坐标代入方程,解方程组求出D、E、F的值.【解析】设所求圆的方程为x2+y2+Dx+Ey+F=0,将A(1,4),B(-2,3),C(4,-5)代入,得⇒故所求圆的方程为x2+y2-2x+2y-23=0.【小结】若已知圆上三点往往要利用待定系数法求解,即设出圆的一般方程,把点的坐标代入即可建立关于D、E、F的方程组.有关圆的轨迹问题等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么.【方法指导】定义法,由等腰三角形的性质可得|CA|=|AB|为确定值,可利用圆的定义写出动点C的轨迹方程.【解析】设点C的坐标为(x,y),由题意得,|AC|=|AB|,即=,整理得(x-4)2+(y-2)2=10,即为点C的轨迹方程,所以点C的轨迹是圆.[问题]点C的轨迹是完整的圆吗?[结论]上述误会忽视了三角形三点不共线这一隐含条件.于是,正确解答如下:设点C的坐标为(x,y),由题意得,|AC|=|AB|,即=,整理得(x-4)2+(y-2)2=10,由于A、B、C是三角形的三个顶点,三点不共线,而直线AB与圆的交点为(3,5)、(5,-1),所以点C的坐标不能为(3,5)、(5,-1),故点C的轨迹方程为(x-4)2+(y-2)2=10(除去点(3,5)、(5,-1)),它的轨迹是以A(4,2)为圆心,为半径的圆,但除去(3,5)、(5,-1)两点.【小结】求曲线的轨迹方程时留意以下几点:(1)依据题目的条件选用适当的求轨迹的方法;(2)要看清是求轨迹还是求轨迹方程,轨迹是轨迹方程所表达的曲线;(3)验证轨迹上是否有应去掉或漏掉的点.若曲线x2+y2+a2x+(1-a2)y-4=0关于直线y-x=0对称的曲线仍是其本身,求实数a的值.【解析】由题意知,圆心C(-,)在直线y-x=0上,∴+=0,∴a2=,∴a=±.(注:F=-4<0,不需检验D2+E2-4F>圆心在直线y=x上,且过点A(-1,1)、B(3,-1),求圆的一般方程.【解析】设圆的一般方程为x2+y2+Dx+Ey+F=0,由题意得解得D=E=-4,F=-2,故所求圆的一般方程是x2+y2-4x-4y-2=0.已知定点A(4,0),点P是圆x2+y2=4上一动点,点Q是AP的中点,求点Q的轨迹方程.【解析】设点Q的坐标为(x,y),点P的坐标为(x0,y0),则即又点P在圆x2+y2=4上,所以+=4,即(2x-4)2+(2y)2=4,整理得(x-2)2+y2=1,即为点Q的轨迹方程.1.将圆x2+y2-2x-4y+1=0平分的直线是().A.x+y-1=0B.x+y+3=0C.x-y+1=0 D.x-y+3=0【解析】解题的突破口为弄清平分线的实质是过圆心的直线,即圆心符合直线方程.圆的标准方程为(x-1)2+(y-2)2=4,所以圆心为(1,2),把点(1,2)代入A、B、C、D,不难得出选项C符合要求.【答案】C2.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为().A.x2+y2-2x-3=0 B.x2+y2+4x=0C.x2+y2+2x-3=0 D.x2+y2-4x=0【解析】设圆心C为(a,0),且a>0,则点C到直线3x+4y+4=0的距离为2,即=2⇒3a+4=±10⇒a=2或a=-(舍去),则圆C的方程为:(x-2)2+(y-0)2=22,即x2+y2-4x=0【答案】D3.假如圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心为.
【解析】将方程配方,得(x+)2+(y+1)2=-k2+1.∴r2=1-k2≤1,rmax=1,此时k=0,且圆面积最大,∴所求圆心为(0,-1).【答案】(0,-1)4.已知圆x2+y2=r2,圆内有定点P(a,b),圆周上有两个动点A、B满足PA⊥PB,求矩形APBQ顶点Q的轨迹方程.【解析】设AB的中点为R,坐标为(x,y),欲求Q的轨迹方程,应先求R的轨迹方程.在Rt△APB中,|AR|=|PR|.又由于R是弦AB的中点,所以在Rt△OAR中,|AR|2=|AO|2-|OR|2=r2-(x2+y2).又|AR|=|PR|=,所以有(x-a)2+(y-b)2=r2-(x2+y2),即2x2+2y2-2ax-2by+a2+b2-r2=0.因此,点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.设Q(x,y),R(x1,y1),由于R是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《从多元文化观点谈》课件
- 2022年高考物理大一轮总复习(江苏专版-)题库-第二章-相互作用-章末
- 2021年高考英语考点总动员系列-专题04-形容词和副词(解析版)
- 【红对勾】2020-2021学年人教版高中物理选修3-1:综合评估
- 【KS5U原创】新课标2021年高二物理暑假作业9《楞次定律》
- 【KS5U原创】新课标2021年高二暑假化学作业(九)
- 【全程复习方略】2022届高考数学(文科人教A版)大一轮阶段滚动检测(五)第一~八章-
- 五年级数学(小数乘法)计算题专项练习及答案
- 2022年行政管理实习报告范文
- 2022年成人高考《大学语文》章节练习题答案及解析
- 2025年正规的离婚协议书
- 2025中国地震应急搜救中心公开招聘应届毕业生5人高频重点提升(共500题)附带答案详解
- 医疗健康大模型白皮书(1.0版) 202412
- 部编版八年级初二语文上册第六单元《写作表达要得体》说课稿
- 公共卫生管理制度(3篇)
- 政治-2025年八省适应性联考模拟演练考试暨2025年四川省新高考教研联盟高三年级统一监测试题和答案
- 2024年中国医药研发蓝皮书
- 坍塌、垮塌事故专项应急预案(3篇)
- 2024年融媒体中心事业单位考试工作人员另选录用55人内部选题库及参考答案(研优卷)
- 排水管道疏通、清淤、检测、修复方案
- 陕西省安康市2023-2024学年高一上学期期末考试 生物 含解析
评论
0/150
提交评论