【创新设计】2021年高考数学(四川专用-理)一轮复习考点突破:第11篇-第1讲-随机事件的概率_第1页
【创新设计】2021年高考数学(四川专用-理)一轮复习考点突破:第11篇-第1讲-随机事件的概率_第2页
【创新设计】2021年高考数学(四川专用-理)一轮复习考点突破:第11篇-第1讲-随机事件的概率_第3页
【创新设计】2021年高考数学(四川专用-理)一轮复习考点突破:第11篇-第1讲-随机事件的概率_第4页
【创新设计】2021年高考数学(四川专用-理)一轮复习考点突破:第11篇-第1讲-随机事件的概率_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1讲随机大事的概率[最新考纲]1.了解随机大事发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区分.2.了解两个互斥大事的概率加法公式.知识梳理1.频率与概率(1)在相同的条件S下重复n次试验,观看某一大事A是否消灭,称n次试验中大事A消灭的次数nA为大事A消灭的频数,称大事A消灭的比例fn(A)=eq\f(nA,n)为大事A消灭的频率.(2)对于给定的随机大事A,假如随着试验次数的增加,大事A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为大事A的概率,简称为A的概率.2.大事的关系与运算定义符号表示包含关系假如大事A发生,则大事B肯定发生,这时称大事B包含大事A(或称大事A包含于大事B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇BA=B并大事(和大事)若某大事发生当且仅当大事A发生或大事B发生,称此大事为大事A与大事B的并大事(或和大事)A∪B(或A+B)交大事(积大事)若某大事发生当且仅当大事A发生且大事B发生,则称此大事为大事A与大事B的交大事(或积大事)A∩B(或AB)互斥大事若A∩B为不行能大事,则称大事A与大事B互斥A∩B=∅对立大事若A∩B为不行能大事,A∪B为必定大事,那么称大事A与大事B互为对立大事A∩B=∅P(A∪B)=P(A)+P(B)=13.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必定大事的概率P(E)=1.(3)不行能大事的概率P(F)=0.(4)互斥大事概率的加法公式①假如大事A与大事B互斥,则P(A∪B)=P(A)+P(B).②若大事B与大事A互为对立大事,则P(A)=1-P(B).辨析感悟1.对随机大事概念的理解(1)“物体在只受重力的作用下会自由下落”是必定大事.(√)(2)“方程x2+2x+8=0有两个实根”是不行能大事.(√)(3)(2022·广州调研C项)“下周六会下雨”是随机大事.(√)2.对互斥大事与对立大事的理解(4)对立大事肯定是互斥大事,互斥大事不肯定是对立大事.(√)(5)(2022·郑州调研B项)从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取一张,“抽取黑桃”与“抽取方块”是对立大事.(×)3.对频率与概率的理解(6)(教材练习改编)在大量重复试验中,概率是频率的稳定值.(√)(7)(教材习题改编)集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率为eq\f(1,3).(√)(8)(2022·临沂调研改编)甲、乙二人下棋,甲获胜的概率是0.3,甲不输的概率为0.8,则甲、乙二人下成和棋的概率为0.5.(√)[感悟·提升]两个区分一是“互斥大事”与“对立大事”的区分:对立大事是互斥大事,是互斥中的特殊状况,但互斥大事不肯定是对立大事,“互斥”是“对立”的必要不充分条件,如(5)中为互斥大事.二是“频率”与“概率”:频率与概率有本质的区分,不行混为一谈.频率随着试验次数的转变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次数足够多,所得频率就可以近似地当作随机大事的概率.同学用书第179页考点一大事的关系与运算【例1】一个均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设大事A表示向上的一面消灭奇数点,大事B表示向上的一面消灭的点数不超过3,大事C表示向上的一面消灭的点数不小于4,则().A.A与B是互斥而非对立大事B.A与B是对立大事C.B与C是互斥而非对立大事D.B与C是对立大事解析依据互斥与对立的定义作答,A∩B={消灭点数1或3},大事A,B不互斥更不对立;B∩C=∅,B∪C=Ω(Ω为必定大事),故大事B,C是对立大事.答案D规律方法对互斥大事要把握住不能同时发生,而对于对立大事除不能同时发生外,其并大事应为必定大事,这些也可类比集合进行理解,具体应用时,可把全部试验结果写出来,看所求大事包含哪些试验结果,从而断定所给大事的关系.【训练1】对飞机连续射击两次,每次放射一枚炮弹.设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的大事是________,互为对立大事的是________.解析设I为对飞机连续射击两次所发生的全部状况,由于A∩B=∅,A∩C=∅,B∩C=∅,B∩D=∅.故A与B,A与C,B与C,B与D为彼此互斥大事,而B∩D=∅,B∪D=I,故B与D互为对立大事.答案A与B,A与C,B与C,B与DB与D考点二随机大事的概率与频率【例2】某小型超市发觉每天营业额Y(单位:万元)与当天进超市顾客人数X有关.据统计,当X=700时,Y=4.6;当X每增加10,Y增加0.05.已知近20天X的值为:1400,1100,1900,1600,1400,1600,2200,1100,1600,1600,1900,1400,1100,1600,2200,1400,1600,1600,1900,700.(1)完成如下的频率分布表:近20天每天进超市顾客人数频率分布表人数70011001400160019002200频率eq\f(1,20)eq\f(4,20)(2)假定今日进超市顾客人数与近20天进超市顾客人数的分布规律相同,并将频率视为概率,求今日营业额低于10.6万元高于4.6万元的概率.解(1)在所给数据中,进超市顾客人数为1100的有3个,为1600的有7个,为1900的有3个,为2200的有2个.故近20天每天进超市顾客人数频率分布表为人数70011001400160019002200频率eq\f(1,20)eq\f(3,20)eq\f(4,20)eq\f(7,20)eq\f(3,20)eq\f(2,20)(2)由已知可得Y=4.6+eq\f(X-700,10)×0.05=eq\f(1,200)X+1.1,∵4.6<Y<10.6,∴4.6<eq\f(X,200)+1.1<10.6,∴700<X<1900.∴P(4.6<Y<10.6)=P(700<X<1900)=P(X=1100)+P(X=1400)+P(X=1600)=eq\f(3,20)+eq\f(4,20)+eq\f(7,20)=eq\f(14,20)=eq\f(7,10).即今日营业额低于10.6万元高于4.6万元的概率为eq\f(7,10).规律方法利用概率的统计定义求大事的概率,即通过大量的重复试验,大事发生的频率会渐渐趋近于某一个常数,这个常数就是概率.【训练2】某市统计的2010~2021年新生婴儿数及其中男婴数(单位:人)见下表:时间2010年2011年2022年2021年新生婴儿数21840230702009419982男婴数11453120311029710242(1)试计算男婴各年的诞生频率(精确到0.001);(2)该市男婴诞生的概率约是多少?解(1)2010年男婴诞生的频率为fn(A)=eq\f(nA,n)=eq\f(11453,21840)≈0.524.同理可求得2011年、2022年和2021年男婴诞生的频率分别约为0.521,0.512,0.513.(2)由以上计算可知,各年男婴诞生的频率在0.51~0.53之间,所以该市男婴诞生的概率约为0.52.同学用书第180页考点三互斥大事、对立大事的概率【例3】(2022·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?审题路线(1)分别求等候人数为0人、1人、2人的概率⇒依据互斥大事的概率求和公式可求.(2)思路一:分别求等候人数为3人、4人、5人及5人以上的概率⇒依据互斥大事的概率求和公式可得.思路二:转化为求其对立大事的概率⇒依据P(A)=1-P(eq\x\to(A))可求.解记“无人排队等候”为大事A,“1人排队等候”为大事B,“2人排队等候”为大事C,“3人排队等候”为大事D,“4人排队等候”为大事E,“5人及5人以上排队等候”为大事F,则大事A,B,C,D,E,F互斥.(1)记“至多2人排队等候”为大事G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一记“至少3人排队等候”为大事H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二记“至少3人排队等候”为大事H,则其对立大事为大事G,所以P(H)=1-P(G)=0.44.规律方法求简单的互斥大事的概率一般有两种方法:一是直接求解法,将所求大事的概率分解为一些彼此互斥的大事的概率的和,运用互斥大事的求和公式计算.二是间接求法,先求此大事的对立大事的概率,再用公式P(A)=1-P(eq\x\to(A)),即运用逆向思维(正难则反),特殊是“至多”,“至少”型题目,用间接求法就显得较简便.【训练3】一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解法一(利用互斥大事求概率)记大事A1={任取1球为红球},A2={任取1球为黑球},A3={任取1球为白球},A4={任取1球为绿球},则P(A1)=eq\f(5,12),P(A2)=eq\f(4,12)=eq\f(1,3),P(A3)=eq\f(2,12)=eq\f(1,6),P(A4)=eq\f(1,12).依据题意知,大事A1,A2,A3,A4彼此互斥,由互斥大事的概率公式,得(1)取出1球为红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=eq\f(5,12)+eq\f(4,12)=eq\f(3,4);(2)取出1球为红球或黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=eq\f(5,12)+eq\f(4,12)+eq\f(2,12)=eq\f(11,12).法二(利用对立大事求概率)(1)由法一知,取出1球为红球或黑球的对立大事为取出1球为白球或绿球,即A1∪A2的对立大事为A3∪A4,所以取出1球为红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1-eq\f(2,12)-eq\f(1,12)=eq\f(3,4).(2)由于A1∪A2∪A3的对立大事为A4,所以P(A1∪A2∪A3)=1-P(A4)=1-eq\f(1,12)=eq\f(11,12).1.对于给定的随机大事A,由于大事A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估量概率P(A).2.从集合角度理解互斥和对立大事从集合的角度看,几个大事彼此互斥,是指由各个大事所含的结果组成的集合彼此的交集为空集,大事A的对立大事eq\x\to(A)所含的结果组成的集合,是全集中由大事A所含的结果组成的集合的补集.创新突破11——全面突破概率与其它学问的综合问题【典例】(2021·新课标全国Ⅱ卷)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.依据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)依据直方图估量利润T不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率).求T的数学期望.突破1:购进130t农产品全部售出还是有剩余是解题的关键;突破2:T为X的函数是分段函数;突破3:由函数求得利润T不少于57000元时的X的范围;突破4:依据直方图估量概率;突破5:找出全部的T的取值,列出分布列,求出数学期望.解(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39000.当X∈[130,150]时,T=500×130=65000.所以T=eq\b\lc\{\rc\(\a\vs4\al\co1(800X-39000,100≤X<130,,65000,130≤X≤150.))(2)由(1)知利润T不少于57000元当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57000元的概率的估量值为0.7.(3)依题意可得T的分布列为T45000530006100065000P0.10.20.30.4所以E(T)=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.[反思感悟](1)本题是一道分段函数、频率直方图、随机大事概率的综合问题,解本题的关键所在是“购进了130t该农产品”是否全部售出.考查了考生的规律思维力量、数据处理力量.(2)在频率分布直方图中,纵轴上的数据表示“频率÷组距”,不能与“频率”混淆.(3)可以用频率来估量概率的值.【自主体验】(2021·四川卷)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3014610…………21001027376697乙的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3012117…………21001051696353当n=2100时,依据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并推断两位同学中哪一位所编程序符合算法要求的可能性较大.(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数X的分布列及数学期望.解(1)变量x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能.当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故P1=eq\f(1,2);当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故P2=eq\f(1,3);当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3=eq\f(1,6).所以,输出y的值为1的概率为eq\f(1,2),输出y的值为2的概率为eq\f(1,3),输出y的值为3的概率为eq\f(1,6).(2)当n=2100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下:输出y的值为1的频率输出y的值为2的频率输出y的值为3的频率甲eq\f(1027,2100)eq\f(376,2100)eq\f(697,2100)乙eq\f(1051,2100)eq\f(696,2100)eq\f(353,2100)比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大.(3)随机变量X可能的取值为0,1,2,3.P(X=0)=Ceq\o\al(0,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))0×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))3=eq\f(8,27),P(X=1)=Ceq\o\al(1,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))1×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))2=eq\f(4,9),P(X=2)=Ceq\o\al(2,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))1=eq\f(2,9),P(X=3)=Ceq\o\al(3,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))3×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))0=eq\f(1,27).故X的分布列为X0123Peq\f(8,27)eq\f(4,9)eq\f(2,9)eq\f(1,27)所以E(X)=0×eq\f(8,27)+1×eq\f(4,9)+2×eq\f(2,9)+3×eq\f(1,27)=1.即X的数学期望为1.

对应同学用书P365基础巩固题组(建议用时:40分钟)一、选择题1.若在同等条件下进行n次重复试验得到某个大事A发生的频率f(n),则随着n的渐渐增加,有().A.f(n)与某个常数相等B.f(n)与某个常数的差渐渐减小C.f(n)与某个常数差的确定值渐渐减小D.f(n)在某个常数四周摇摆并趋于稳定解析随着n的增大,频率f(n)会在概率四周摇摆并趋于稳定,这也是频率与概率的关系.答案D2.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的大事是().A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球解析对于A中的两个大事不互斥,对于B中两个大事互斥且对立,对于C中两个大事不互斥,对于D中的两个互斥而不对立.答案D3.从某班同学中任意找出一人,假如该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身超群过175cm的概率为().A.0.2B.0.3C.0.7D.0.8解析由题意知该同学的身超群过175cm的概率为1-0.2-0.5=0.3,故选B.答案B4.(2022·沈阳模拟)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是().A.eq\f(1,10)B.eq\f(3,10)C.eq\f(3,5)D.eq\f(9,10)解析从装有3个红球、2个白球的袋中任取3个球通过列举知共有10个基本大事;所取的3个球中至少有1个白球的反面为“3个球均为红色”,有1个基本大事,所以所取的3个球中至少有1个白球的概率是1-eq\f(1,10)=eq\f(9,10).答案D5.(2021·陕西卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.依据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估量概率,现从该批产品中随机抽取1件,则其为二等品的概率是().A.0.09B.0.20C.0.25D.0.45解析由频率分布直方图可知,一等品的频率为0.06×5=0.3,三等品的频率为0.02×5+0.03×5=0.25,所以二等品的频率为1-(0.3+0.25)=0.45.用频率估量概率可得其为二等品的概率为0.45.答案D二、填空题6.(2022·郑州模拟)抛掷一粒骰子,观看掷出的点数,设大事A为消灭奇数点,大事B为消灭2点,已知P(A)=eq\f(1,2),P(B)=eq\f(1,6),则消灭奇数点或2点的概率为________.解析由于大事A与大事B是互斥大事,所以P(A∪B)=P(A)+P(B)=eq\f(1,2)+eq\f(1,6)=eq\f(2,3).答案eq\f(2,3)7.从一副混合后的扑克牌(52张)中,随机抽取1张,大事A为“抽得红桃K”,大事B为“抽得黑桃”,则概率P(A∪B)=________(结果用最简分数表示).解析∵P(A)=eq\f(1,52),P(B)=eq\f(13,52),∴P(A∪B)=P(A)+P(B)=eq\f(1,52)+eq\f(13,52)=eq\f(14,52)=eq\f(7,26).答案eq\f(7,26)8.(2022·成都模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中消灭乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.解析记“生产中消灭甲级品、乙级品、丙级品”分别为大事A,B,C.则A,B,C彼此互斥,由题意可得P(B)=0.03,P(C)=0.01,所以P(A)=1-P(B+C)=1-P(B)-P(C)=1-0.03-0.01=0.96.答案0.96三、解答题9.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是eq\f(1,3),黑球或黄球的概率是eq\f(5,12),绿球或黄球的概率也是eq\f(5,12),求从中任取一球,得到黑球、黄球和绿球的概率分别是多少?解从袋中任取一球,记大事“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为A,B,C,D,则大事A,B,C,D彼此互斥,所以有P(B+C)=P(B)+P(C)=eq\f(5,12),P(D+C)=P(D)+P(C)=eq\f(5,12),P(B+C+D)=P(B)+P(C)+P(D)=1-P(A)=1-eq\f(1,3)=eq\f(2,3),解得P(B)=eq\f(1,4),P(C)=eq\f(1,6),P(D)=eq\f(1,4).故从中任取一球,得到黑球、黄球和绿球的概率分别是eq\f(1,4),eq\f(1,6),eq\f(1,4).10.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(1)分别估量用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=eq\b\lc\{\rc\(\a\vs4\al\co1(-2,t<94,,2,94≤t<102,,4,t≥102.))从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).解(1)由试验结果知,用A配方生产的产品中优质品的频率为eq\f(22+8,100)=0.3,所以用A配方生产的产品的优质品率的估量值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为eq\f(32+10,100)=0.42,所以用B配方生产的产品的优质品率的估量值为0.42.(2)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,因此P(X=-2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为X-224P0.040.540.42X的数学期望E(X)=-2×0.04+2×0.54+4×0.42=2.68.力量提升题组(建议用时:25分钟)一、选择题1.(2022·大连模拟)某城市2021年的空气质量状况如下表:污染指数T3060100110130140概率Peq\f(1,10)eq\f(1,6)eq\f(1,3)eq\f(7,30)eq\f(2,15)eq\f(1,30)其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为稍微污染,则该城市2021年空气质量达到良或优的概率为().A.eq\f(3,5)B.eq\f(1,180)C.eq\f(1,19)D.eq\f(5,6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论