版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年浙教版高三数学下册月考试卷661考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三总分得分评卷人得分一、选择题(共6题,共12分)1、设p:0<x<5,q:|x-2|<3,那么p是q的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要2、若x,y>0且x+y>2,则和的值满足()A.和中至少有一个小于2B.和都等于2C.和都大于2D.不确定3、设全集U={1,3,5,7},集合A={3,5},B={1,3,7},则A∩(∁UB)等于()A.{5}B.{3,5}C.{1,5,7}D.∅4、【题文】抛物线的焦点到准线的距离是().A.B.C.D.5、【题文】若方程在[1,4]上有实数解,则实数a的取值范围是()
A.[4,5]B.[3,5]C.[3,4]D.[4,6]6、下列命题中是假命题的是()A.x>sinxB.∃x0∈R,sinx0+cosx0=2C.∀x∈R,3x>0D.∃x0∈R,lgx0=0评卷人得分二、填空题(共6题,共12分)7、已知函数f(x)=sinx-cosx,则=____.8、甲、乙两台机床同时生产一种零件,根据已知数据求得甲、乙机床的次品数的平均值分别为=1.2,方差分别为s甲2=1.65,s乙2=0.76,则性能比较好的机床是____.9、已知双曲线C:-=1(a>0,b>0)的一个焦点是抛物线y2=8x的焦点,且双曲线C的离心率为2,那么双曲线C的方程为____;渐近线方程是____.10、已知函数f(x)=x+lnx的导函数为f′(x),则f′(1)=____.11、已知数列的前n项和为Sn,数列{bn}的通项公式为bn=n-8,则bnSn的最小值为____.12、(坐标系与参数方程选做题)已知直线l的参数方程为(参数t∈R),若圆C的极坐标方程为ρ=2cosθ,则圆心C到直线l的距离为____.评卷人得分三、判断题(共6题,共12分)13、函数y=sinx,x∈[0,2π]是奇函数.____(判断对错)14、已知函数f(x)=4+ax-1的图象恒过定点p,则点p的坐标是(1,5)____.(判断对错)15、函数y=sinx,x∈[0,2π]是奇函数.____(判断对错)16、已知函数f(x)=4+ax-1的图象恒过定点p,则点p的坐标是(1,5)____.(判断对错)17、已知A={x|x=3k-2,k∈Z},则5∈A.____.18、若b=0,则函数f(x)=(2k+1)x+b在R上必为奇函数____.参考答案一、选择题(共6题,共12分)1、A【分析】【分析】根据充分条件和必要条件的定义进行判断即可.【解析】【解答】解:由|x-2|<3;得:-3<x-2<3,即-1<x<5,即q:-1<x<5;
故p是q的充分不必要条件;
故选:A.2、A【分析】【分析】取x=y=2,计算可得==,即可得出结论.【解析】【解答】解:取x=y=2,可得==;
故选:A.3、A【分析】【分析】直接运用补集和交集的概念求解.【解析】【解答】解:∵全集U={1;3,5,7},B={1,3,7};
∴∁UB={5};
又∵集合A={3;5};
∴A∩(∁UB)={3;5}∩{5}={5}.
故选A.4、B【分析】【解析】解:因为抛物线的焦点到准线的距离是P,因此2p=10,p=5,选B【解析】【答案】B5、A【分析】【解析】略【解析】【答案】A6、B【分析】解:因为tanx>x>sinx恒成立,所以A正确;
∃x0∈R,sinx0+cosx0=sin(x+)≤所以B不正确;
由指数函数的性质可知:∀x∈R,3x>0;正确;
当x0=1时,说明∃x0∈R,lgx0=0;正确;
故选B【解析】【答案】B二、填空题(共6题,共12分)7、略
【分析】【分析】由条件利用两角差的正弦公式化简函数f(x)的解析式,从而求得f()的值.【解析】【解答】解:∵函数f(x)=sinx-cosx=sin(x-);
则=sin(-)=-=-;
故答案为:-.8、略
【分析】【分析】先根据平均数与方差的计算公式计算出乙的样本平均数与方差,再与甲的对照得出结论.【解析】【解答】解:∵=1.2,方差分别为s甲2=1.65,s乙2=0.76;
乙的平均数比甲的平均数小;且S甲2>S乙2,所以乙机床的性能较好.
故答案为:乙.9、略
【分析】【分析】根据抛物线的焦点(2,0)便得到c=2,而根据双曲线C的离心率即可得到,所以a=1,所以得出b2=3,这样即可得出双曲线C的方程以及渐近线方程.【解析】【解答】解:抛物线的焦点为(2;0);
∴c=2;
∴根据双曲线的离心率为2得:;
∴a=1,b2=3;
∴双曲线C的方程为;
∴其渐近线方程为y=.
故答案为:,.10、略
【分析】【分析】根据函数的导数公式进行求解即可得到结论.【解析】【解答】解:∵函数f(x)=x+lnx;
∴f′(x)=1+;
则f′(1)=1+1=2;
故答案为:211、略
【分析】
an=(2x+1)dx=(x2+x)=n2+n
∴==-
∴数列{}的前n项和为Sn=+++=1-+-++-=1-=
又bn=n-8,n∈N*,
则bnSn=×(n-8)=n+1+-10≥2-10=-4,等号当且仅当n+1=即n=2时成立,
故bnSn的最小值为-4.
故答案为:-4.
【解析】【答案】由题意,先由微积分基本定理求出an再根据通项的结构求出数列的前n项和为Sn,然后代入求bnSn的最小值即可得到答案。
12、略
【分析】
直线l的普通方程为x+y-3=0,圆C的直角坐标方程为x2+y2-2x=0.
所以圆心C(1,0)到直线l的距离d==.
故答案为:.
【解析】【答案】已知直线l的参数方程为(t为参数);将直线l先化为一般方程坐标,将圆C的极坐标方程化成直角坐标方程,然后再计算圆心C到直线l的距离.
三、判断题(共6题,共12分)13、×【分析】【分析】根据奇函数的定义进行判断即可得到答案.【解析】【解答】解:∵x∈[0;2π],定义域不关于原点对称;
故函数y=sinx不是奇函数;
故答案为:×14、√【分析】【分析】已知函数f(x)=ax-1+4,根据指数函数的性质,求出其过的定点.【解析】【解答】解:∵函数f(x)=ax-1+4;其中a>0,a≠1;
令x-1=0,可得x=1,ax-1=1;
∴f(x)=1+4=5;
∴点P的坐标为(1;5);
故答案为:√15、×【分析】【分析】根据奇函数的定义进行判断即可得到答案.【解析】【解答】解:∵x∈[0;2π],定义域不关于原点对称;
故函数y=sinx不是奇函数;
故答案为:×16、√【分析】【分析】已知函数f(x)=ax-1+4,根据指数函数的性质,求出其过的定点.【解析】【解答】解:∵函数f(x)=ax-1+4;其中a>0,a≠1;
令x-1=0,可得x=1,ax-1=1;
∴f(x)=1+4=5;
∴点P的坐标为(1;5);
故答案为:√17、×【分析】【分析】判断5与集合A的关系即可.【解析】【解答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度土地承包经营权续包与调整合同模板4篇
- 2025年度商铺租赁合同环保与节能条款规范4篇
- 2025年伊捷卡项目可行性研究报告
- 2025年江西宜春公交集团有限公司招聘笔试参考题库含答案解析
- 2025年浙江嘉兴兴港热网有限公司招聘笔试参考题库含答案解析
- 2025年安徽亳州市蒙城县城投集团招聘笔试参考题库含答案解析
- 2025年浙江余杭旅游集团有限公司招聘笔试参考题库含答案解析
- 2025年浙江国企杭州建德市公共交通运输有限公司招聘笔试参考题库附带答案详解
- 漳州理工职业学院《教学技能培训》2023-2024学年第一学期期末试卷
- 张家口职业技术学院《智慧供应链管理实训》2023-2024学年第一学期期末试卷
- 2025年安徽马鞍山市两山绿色生态环境建设有限公司招聘笔试参考题库附带答案详解
- 货运企业2025年度安全检查计划
- 以发展为导向共创教育新篇章-2024年期末校长总结讲话稿
- 2025年焊工安全生产操作规程(2篇)
- 广东省广州越秀区2023-2024学年八年级上学期期末数学试卷(含答案)
- 临床经鼻高流量湿化氧疗患者护理查房
- 2024年贵州省中考数学真题含解析
- T.C--M-ONE效果器使用手册
- 8小时等效A声级计算工具
- 人教版七年级下册数学计算题300道
- 社会实践登记表
评论
0/150
提交评论