广东工商职业技术大学《视觉形象识别设计》2023-2024学年第一学期期末试卷_第1页
广东工商职业技术大学《视觉形象识别设计》2023-2024学年第一学期期末试卷_第2页
广东工商职业技术大学《视觉形象识别设计》2023-2024学年第一学期期末试卷_第3页
广东工商职业技术大学《视觉形象识别设计》2023-2024学年第一学期期末试卷_第4页
广东工商职业技术大学《视觉形象识别设计》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页广东工商职业技术大学《视觉形象识别设计》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、图像分类是计算机视觉的常见任务之一。假设要对大量的自然风景图片进行分类,如山脉、森林、海滩等。在进行图像分类时,以下关于数据增强的方法,哪一项可能不太有效?()A.对图像进行随机裁剪和旋转,增加数据的多样性B.改变图像的色彩和对比度,模拟不同的拍摄条件C.直接复制原图像,增加数据量D.给图像添加随机噪声,增强模型的鲁棒性2、当利用计算机视觉进行图像超分辨率重建任务,将低分辨率图像恢复为高分辨率图像,以下哪种深度学习模型可能在重建效果上表现出色?()A.SRCNNB.ESPCNC.DRCND.以上都是3、计算机视觉中的行人重识别是在不同摄像头拍摄的图像或视频中识别出特定的行人。以下关于行人重识别的叙述,不正确的是()A.行人重识别需要提取具有判别性的行人特征,克服视角、光照和姿态的变化B.深度学习方法在行人重识别任务中取得了显著的性能提升C.行人重识别在智能安防、视频监控和人员追踪等领域有重要的应用D.行人重识别技术已经能够在大规模数据集上达到100%的准确率4、在计算机视觉的动作识别任务中,区分不同的人体动作。假设要从一段视频中识别出一个人是在跑步还是走路,以下关于动作识别方法的描述,正确的是:()A.基于骨架信息的动作识别方法对人体姿态的微小变化不敏感B.只考虑动作的空间特征就能准确识别不同的动作C.融合时空特征和深度学习模型能够提升动作识别的准确率D.动作识别的结果不受视频拍摄角度和背景干扰的影响5、在计算机视觉的人脸识别任务中,需要应对姿态、表情和光照等变化。假设要构建一个能够在不同环境下准确识别人脸的系统,以下哪种人脸识别方法在处理这些变化时具有更高的准确性和鲁棒性?()A.基于特征点的人脸识别B.基于模板匹配的人脸识别C.基于深度学习的人脸识别D.基于几何形状的人脸识别6、计算机视觉中的光流估计是计算图像中像素的运动信息。以下关于光流估计的叙述,不正确的是()A.光流估计可以用于视频中的运动分析、目标跟踪和动作识别等任务B.基于深度学习的光流估计方法在精度和速度上都有了很大的提升C.光流估计只对匀速运动的物体有效,对于复杂的非匀速运动估计不准确D.光流估计的结果可以为后续的计算机视觉任务提供重要的运动线索7、计算机视觉中的场景理解是理解图像或视频中的场景内容和语义信息。假设要理解一张城市街道的图像,以下关于场景理解方法的描述,哪一项是不正确的?()A.可以通过对象检测、语义分割和场景分类等任务来实现场景理解B.结合上下文信息和先验知识能够提高场景理解的准确性C.深度学习模型能够学习场景中的全局特征和关系,实现对场景的深入理解D.场景理解可以在没有任何先验知识和上下文信息的情况下,准确地推断出场景的语义8、计算机视觉中的动作识别是对视频中人物或物体的动作进行分类和理解。假设要识别一段舞蹈视频中的各种舞蹈动作,同时要考虑动作的速度、幅度和风格的变化。以下哪种动作识别方法在处理这种复杂的动作模式时表现更好?()A.基于手工特征的动作识别B.基于时空兴趣点的动作识别C.基于深度学习的时空卷积网络D.基于隐马尔可夫模型的动作识别9、在计算机视觉的图像检索任务中,需要根据用户提供的示例图像从大规模图像数据库中找到相似的图像。假设要构建一个高效的图像搜索引擎,能够快速准确地返回相关图像。以下哪种图像检索方法在处理大规模数据时性能更优?()A.基于内容的图像检索B.基于文本标注的图像检索C.基于哈希编码的图像检索D.基于深度学习特征的图像检索10、在计算机视觉的应用于自动驾驶领域,需要实时检测道路上的交通标志和标线。假设车辆在高速行驶中,以下哪种技术能够快速准确地检测到各种交通标志,并且对光照变化和遮挡具有较强的鲁棒性?()A.基于颜色和形状特征的检测方法B.基于深度学习的检测方法,结合多尺度特征C.基于边缘检测和形态学操作的方法D.基于模板匹配和特征点匹配的方法11、在计算机视觉的三维重建任务中,假设要从一组二维图像恢复出物体的三维结构。以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法需要多视角的图像,并且对相机的标定精度要求不高B.结构光方法能够快速准确地获取物体表面的三维信息,但对环境光敏感C.从运动中恢复结构(SfM)方法只适用于静态场景,无法处理动态物体D.所有的三维重建方法都能够生成高精度的、完整的物体三维模型12、在计算机视觉的图像分割任务中,假设要将一张医学图像中的病变区域精确地分割出来,以便医生进行诊断和治疗。这张医学图像可能存在噪声、模糊和不均匀的灰度分布。以下哪种图像分割方法在处理这种复杂情况时可能更具优势?()A.基于阈值的分割方法,根据像素值设定阈值进行分割B.基于区域生长的分割方法,从种子点开始逐渐扩展区域C.基于深度学习的语义分割算法,如U-NetD.随机分割图像,然后根据后续分析进行调整13、在计算机视觉的应用中,人脸识别技术受到广泛关注。假设一个人脸识别系统正在进行身份验证,以下关于人脸识别的描述,正确的是:()A.只依靠面部的几何形状信息就能实现准确的人脸识别B.光照变化和面部表情对人脸识别的准确率没有影响C.结合深度学习模型和多模态信息,如红外图像,可以提高人脸识别的性能和可靠性D.人脸识别系统不需要考虑数据的隐私和安全问题14、在计算机视觉的遥感图像分析中,假设要从卫星遥感图像中提取土地利用信息,以下哪种技术可能对区分不同类型的土地覆盖有帮助?()A.高光谱分析B.纹理分析C.形状分析D.以上都有可能15、计算机视觉中的姿态估计是指确定物体在三维空间中的位置和方向。以下关于姿态估计的说法,错误的是()A.姿态估计可以通过单目相机、双目相机或深度相机来实现B.基于深度学习的方法在姿态估计任务中表现出了较高的精度C.姿态估计在机器人操作、增强现实等领域有着重要的应用价值D.姿态估计的结果总是非常精确,不受物体形状和遮挡的影响16、在计算机视觉的图像修复任务中,假设图像中有大面积的损坏或缺失区域,以下哪种方法可能更依赖于对图像全局结构的理解?()A.基于纹理合成的方法B.基于扩散的方法C.基于深度学习的方法D.基于样例的方法17、在计算机视觉的场景理解任务中,假设要理解一个室内场景的布局和功能,例如判断是办公室还是客厅。以下哪种信息对于准确理解场景是至关重要的?()A.物体的类别和位置B.图像的颜色分布C.图像的拍摄角度D.随机选择图像中的部分区域进行分析18、在图像配准任务中,需要将不同时间、不同视角或不同传感器获取的图像进行对齐。假设我们要将一张卫星图像与一张航拍图像进行配准,以下哪个因素对于配准的准确性影响最大?()A.图像的分辨率差异B.图像的旋转和平移C.图像的光照条件D.图像中的噪声19、计算机视觉在无人驾驶中的应用至关重要。假设要通过车载摄像头识别道路上的交通标志和标线,以下关于应对复杂环境变化的策略,哪一项是不正确的?()A.利用多模态数据融合,如结合摄像头和激光雷达的信息B.定期更新模型,适应新出现的交通标志和标线C.只依靠单一摄像头的图像信息,不考虑其他传感器D.对不同天气和光照条件下的数据进行增强训练20、计算机视觉在虚拟现实(VR)和增强现实(AR)中有重要作用。假设要在VR环境中实现真实感的物体交互,以下哪种技术可能对准确感知物体的位置和姿态至关重要?()A.立体视觉B.光场成像C.结构光D.运动捕捉21、当利用计算机视觉技术对医学影像(如X光、CT等)进行分析,辅助医生进行疾病诊断时,需要从大量的图像数据中提取有价值的特征。以下哪种特征提取方法在医学影像分析中可能具有较高的应用价值?()A.基于形状的特征提取B.基于纹理的特征提取C.基于深度学习的自动特征学习D.基于颜色的特征提取22、在计算机视觉中,图像增强技术用于改善图像的质量。以下关于图像增强的描述,不正确的是()A.图像增强可以包括对比度增强、锐化、去噪等操作B.图像增强的目的是使图像更适合人类视觉观察或后续的处理任务C.过度的图像增强可能会导致图像失真或引入噪声D.图像增强只对低质量的图像有效果,对于高质量的图像没有必要进行增强23、计算机视觉在虚拟现实(VR)和增强现实(AR)中有着重要的应用。假设要在VR游戏中实现真实的场景交互。以下关于计算机视觉在VR/AR中的描述,哪一项是不正确的?()A.可以通过对用户的动作和姿态进行识别,实现自然的交互操作B.能够将虚拟物体与真实场景进行准确的融合和匹配C.计算机视觉技术可以提高VR/AR体验的沉浸感和真实感D.VR/AR中的计算机视觉应用不存在任何技术挑战和限制24、计算机视觉中的视频理解不仅包括对单个帧的分析,还需要考虑帧之间的关系。假设我们要理解一个电影片段的情节和情感,以下哪种方法能够有效地捕捉视频中的时空动态信息和语义信息?()A.基于帧级特征和分类器的方法B.基于深度学习的视频理解模型,结合注意力机制C.基于光流和运动轨迹的方法D.基于音频和视频融合的方法25、计算机视觉在体育赛事分析中的应用可以提供更深入的比赛洞察。假设要分析一场足球比赛中球员的跑位和传球模式,以下关于体育赛事计算机视觉应用的描述,正确的是:()A.仅依靠球员的位置信息就能全面分析比赛中的战术和策略B.球员的速度和加速度等动态信息对比赛分析的价值不大C.结合深度学习和轨迹分析技术可以更有效地挖掘比赛中的关键模式和趋势D.比赛场地的光照和摄像机视角对计算机视觉分析的结果没有影响26、计算机视觉中的人脸识别技术应用广泛。假设要在一个门禁系统中实现准确的人脸识别,以下关于人脸识别方法的描述,正确的是:()A.基于几何特征的人脸识别方法对姿态和光照变化具有很强的鲁棒性B.基于模板匹配的方法能够处理大规模的人脸数据库,并且识别速度快C.深度学习中的卷积神经网络在人脸识别中能够学习到更具判别性的特征,但容易受到数据偏差的影响D.人脸识别系统一旦训练完成,就不需要更新和优化,能够一直保持高准确率27、在计算机视觉中,深度估计是确定场景中物体距离相机的距离。以下关于深度估计的说法,错误的是()A.可以通过立体视觉、结构光或飞行时间等技术来获取深度信息B.深度学习方法在单目深度估计中取得了显著进展C.深度估计对于三维重建、虚拟现实和增强现实等应用具有重要意义D.深度估计的结果总是非常精确,不需要进行后处理和优化28、视频理解是计算机视觉中的一个具有挑战性的任务。以下关于视频理解的叙述,不准确的是()A.视频理解不仅需要分析每一帧图像的内容,还需要考虑帧之间的时间关系B.循环神经网络(RNN)和长短期记忆网络(LSTM)在处理视频序列数据时具有优势C.视频理解在视频监控、行为分析和内容推荐等方面具有广泛的应用前景D.目前的视频理解技术已经能够完全理解复杂场景下的视频内容,不存在任何挑战29、在计算机视觉的场景理解任务中,假设要理解一个室内场景的布局和物体关系。以下关于利用深度学习模型的方法,哪一项是不太恰当的?()A.使用卷积神经网络(CNN)提取图像特征B.运用循环神经网络(RNN)处理场景的序列信息C.直接使用未经训练的神经网络,期望其自动学习场景理解D.结合CNN和RNN,构建端到端的场景理解模型30、计算机视觉中的视频理解任务包括对视频内容的分析和解释。假设要理解一段新闻视频的主要内容和事件发展。以下关于视频理解的描述,哪一项是不正确的?()A.可以通过对视频中的帧进行分类、目标检测和跟踪来实现视频理解B.深度学习中的注意力机制可以帮助聚焦视频中的关键信息,提高理解的准确性C.视频理解只需要关注视觉信息,不需要考虑音频和文字等其他模态的信息D.可以结合知识图谱和语义理解技术,对视频中的内容进行更深入的分析和解释二、应用题(本大题共5个小题,共25分)1、(本题5分)运用图像识别技术,检测物流仓库中包裹的标签信息。2、(本题5分)使用目标跟踪算法,对游泳比赛中的运动员进行轨迹跟踪和速度分析。3、(本题5分)利用目标检测算法,在地质勘查图像中检测矿坑。4、(本题5分)基于深度学习,实现对乒乓球比赛中擦边球的检测。5、(本题5分)开发一个能够识别不同种类贝类的程序。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论