版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年沪教版高二数学下册阶段测试试卷450考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、若在双曲线的右支上到原点和右焦点距离相等的点有两个;则双曲线的离心率的取值范围是()
A.
B.
C.e>2
D.1<e<2
2、若为任意向量,m∈R,则下列等式不一定成立的是A.=B.=C.m()=mD.=3、【题文】已知满足:则()A.B.10C.3D.4、【题文】直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a=()A.-3B.2C.-3或2D.3或-25、设等差数列的前项和是若(N*,且),则必定有()A.且B.且C.且D.且评卷人得分二、填空题(共7题,共14分)6、【题文】已知椭圆+=1的两个焦点是F1、F2,点P在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2的面积是____.7、【题文】与双曲线有共同的渐近线,并且经过点的双曲线是____。8、【题文】=____9、【题文】已知{an}为等差数列,a3+a8=22,a6=7,则a5=____________10、投篮测试中,某同学投3次,每次投篮投中的概率相同,且各次投篮是否投中相互独立.已知他至少投中一次的概率为则该同学每次投篮投中的概率为____.11、直线(t为参数)被双曲线x2-y2=1上截得的弦长为______.12、已知f隆盲(x)
是函数f(x)
的导函数,f(x)=sinx+2xf隆盲(0)
则f隆盲(娄脨2)=
______.评卷人得分三、作图题(共6题,共12分)13、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
14、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)15、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
16、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)17、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)18、分别画一个三棱锥和一个四棱台.评卷人得分四、解答题(共1题,共9分)19、当m为何实数时,复数z=+(m2+3m-10)i;
(1)是实数;
(2)是虚数;
(3)是纯虚数.评卷人得分五、计算题(共4题,共32分)20、如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.21、1.(本小题满分12分)已知数列满足且()。(1)求的值;(2)猜想数列的通项公式,并用数学归纳法加以证明。22、设L为曲线C:y=在点(1,0)处的切线.求L的方程;23、求证:ac+bd≤•.评卷人得分六、综合题(共3题,共18分)24、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过AB,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心;以AD为半径作⊙A.
①证明:当AD+CD最小时;直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:____.25、(2009•新洲区校级模拟)如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.则AF•BE=____.26、已知f(x)=﹣3x2+a(6﹣a)x+6.参考答案一、选择题(共5题,共10分)1、C【分析】
设双曲线右支任意一点坐标为(x;y)则x≥a;
∵到右焦点的距离和到中心的距离相等;
由两点间距离公式:x2+y2=(x-c)2+y2得x=
∵x≥a,∴≥a;得e≥2;
又∵双曲线的离心率等于2时;c=2a,此时右支上只有一个点即顶点到中心和右焦点的距离相等;
所以不能等于2
故选C.
【解析】【答案】先设出双曲线右支任意一点坐标;根据到右焦点的距离和到中心的距离相等,利用两点间距离公式建立等式求得x,进而利用x的范围确定a和c的不等式关系,进而求得e的范围,同时根据双曲线的离心率等于2时,右支上只有一个点即顶点到中心和右焦点的距离相等,所以不能等于2,最后综合求得答案.
2、D【分析】【解析】试题分析:A,C都是向量与向量相等,B表示实数相等;而D中等式左边是与共线的向量,右边是与共线的向量,所以不一定成立。故选D。考点:本题主要考查平面向量的线性运算、数量积,向量的概念。【解析】【答案】D3、D【分析】【解析】
试题分析:由得
考点:向量求模。
点评:利用关系式实现向量与数量的转化【解析】【答案】D4、C【分析】【解析】依题意可得,解得或故选C【解析】【答案】C5、A【分析】【解答】由题意等差数列中则所以二、填空题(共7题,共14分)6、略
【分析】【解析】由椭圆方程+=1可知c=a=2,
∴|PF1|+|PF2|=4.
又|PF1|-|PF2|=2,
∴|PF1|=3,|PF2|=1.
又|F1F2|=2
∴|PF1|2=|PF2|2+|F1F2|2,
∴PF2⊥F1F2,
∴=|PF2||F1F2|
=×1×2
=【解析】【答案】7、略
【分析】【解析】
试题分析:与双曲线共渐近线,可设所求双曲线方程为然后把点(2,3)代入解得λ即可.
考点:双曲线的标准方程与几何性质.【解析】【答案】8、略
【分析】【解析】略【解析】【答案】29、略
【分析】【解析】由于为等差数列,故∴【解析】【答案】1510、【分析】【解答】解:设某同学投3次;设投篮投中的概率是x,则不中的概率是(1﹣x);
故一次也没有投中的概率是:(1﹣x)3;
故他至少投中一次的概率为1﹣(1﹣x)3=解得:x=
故答案为:.
【分析】求出投篮投中的概率,从而求出该同学每次投篮投中的概率即可.11、略
【分析】解:直线(t为参数)化为普通方程为y=(x-2);
将它代入双曲线方程,消去y,得2x2-12x+13=0;
则x1+x2=6,x1x2=
则截得的弦长为=2=2.
故答案为:
将直线参数方程化为普通方程,联立双曲线方程,消去y,得2x2-12x+13=0;运用韦达定理,再由弦长公式,即可得到.
本题考查参数方程与普通方程的互化,考查直线与双曲线相交求弦长问题,注意联立方程,运用韦达定理和弦长公式,属于基础题.【解析】212、略
【分析】解:隆脽f(x)=sinx+2xf隆盲(0)
隆脿f隆盲(x)=cosx+2f隆盲(0)
令x=0
则f隆盲(0)=cos0+2f隆盲(0)=1+2f隆盲(0)
隆脿f隆盲(0)=鈭�1
隆脿f隆盲(娄脨2)=cos娄脨2+2f隆盲(0)=鈭�2
故答案为:鈭�2
根据导数的求导公式,先求导,再求出f隆盲(0)
最后求出f隆盲(娄脨2)
.
本题主要考查导数的计算,要求熟练掌握常见函数的导数的公式.【解析】鈭�2
三、作图题(共6题,共12分)13、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
14、略
【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.
证明:∵A与A'关于OM对称;A与A″关于ON对称;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根据两点之间线段最短,A'A''为△ABC的最小值.15、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
16、略
【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.
证明:∵A与A'关于OM对称;A与A″关于ON对称;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根据两点之间线段最短,A'A''为△ABC的最小值.17、略
【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;
这样PA+PB最小;
理由是两点之间,线段最短.18、解:画三棱锥可分三步完成。
第一步:画底面﹣﹣画一个三角形;
第二步:确定顶点﹣﹣在底面外任一点;
第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.
画四棱可分三步完成。
第一步:画一个四棱锥;
第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;
第三步:将多余线段擦去.
【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、解答题(共1题,共9分)19、略
【分析】
(1)复数是实数;则虚部为零,求得m的实数值;
(2)复数是虚数;则虚部不为零,可求得m的实数值;
(3)复数是纯虚数;则实部为零,虚部不为零,即可求得m的实数值.
本题的考点是复数的基本概念,主要考查复数的有关概念及方程(组)的解法.关键是理解复数是实数,则虚部为零;复数是虚数,则虚部不为零;复数是纯虚数,则实部为零,虚部不为零.【解析】解:(1)z为实数,则虚部m2+3m-10=0,即
解得m=2;∴m=2时,z为实数.
(2)z为虚数,则虚部m2+3m-10≠0,即
解得m≠2且m≠±5.当m≠2且m≠±5时,z为虚数.
解得m=-∴当m=-时,z为纯虚数.五、计算题(共4题,共32分)20、略
【分析】【分析】作点B关于AC的对称点E,连接EP、EB、EM、EC,则PB+PM=PE+PM,因此EM的长就是PB+PM的最小值.【解析】【解答】解:如图;作点B关于AC的对称点E,连接EP;EB、EM、EC;
则PB+PM=PE+PM;
因此EM的长就是PB+PM的最小值.
从点M作MF⊥BE;垂足为F;
因为BC=2;
所以BM=1,BE=2=2.
因为∠MBF=30°;
所以MF=BM=,BF==,ME==.
所以PB+PM的最小值是.21、略
【分析】【解析】
(1)由题得又则3分(2)猜想5分证明:①当时,故命题成立。②假设当时命题成立,即7分则当时,故命题也成立。11分综上,对一切有成立。12分【解析】【答案】(1)(2)有成立。22、解:所以当x=1时,k=点斜式得直线方程为y=x-1【分析】【分析】函数的导数这是导函数的除法运算法则23、证明:∵(a2+b2)•(c2+d2)﹣(ac+bd)2=(ad﹣bc)2≥0,∴(a2+b2)•(c2+d2)≥(ac+bd)2;
∴|ac+bd|≤•
∴ac+bd≤•【分析】【分析】作差(a2+b2)•(c2+d2)﹣(ac+bd)2=(ad﹣bc)2≥0,即可证明.六、综合题(共3题,共18分)24、略
【分析】【分析】(1)由待定系数法可求得抛物线的解析式.
(2)连接BC;交直线l于点D,根据抛物线对称轴的性质,点B与点A关于直线l对称,∴AD=BD.
∴AD+CD=BD+CD;由“两点之间,线段最短”的原理可知:D在直线BC上AD+CD最短,所以D是直线l与直线BC的交点;
设出直线BC的解析式为y=kx+b;可用待定系数法求得BC直线的解析式,故可求得BC与直线l的交点D的坐标.
(3)由(2)可知,当AD+CD最短时,D在直线BC上,由于已知A,B,C,D四点坐标,根据线段之间的长度,可以求出△ABD是直角三角形,即BC与圆相切.由于AB⊥l,故由垂径定理知及切线长定理知,另一点D与现在的点D关于x轴对称,所以另一点D的坐标为(1,-2).【解析】【解答】解:
(1)设抛物线的解析式为y=a(x+1)(x-3).(1分)
将(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴抛物线的解析式为y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)连接BC;交直线l于点D.
∵点B与点A关于直线l对称;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“两点之间;线段最短”的原理可知:
此时AD+CD最小;点D的位置即为所求.(5分)
设直线BC的解析式为y=kx+b;
由直线BC过点(3;0),(0,3);
得
解这个方程组,得
∴直线BC的解析式为y=-x+3.(6分)
由(1)知:对称轴l为;即x=1.
将x=1代入y=-x+3;得y=-1+3=2.
∴点D的坐标为(1;2).(7分)
说明:用相似三角形或三角函数求点D的坐标也可;答案正确给(2分).
(3)①连接AD.设直线l与x轴的交点记为点E.
由(2)知:当AD+CD最小时;点D的坐标为(1,2).
∴DE=AE=BE=2.
∴∠DAB=∠DBA=45度.(8分)
∴∠ADB=90度.
∴AD⊥BD.
∴BD与⊙A相切.(9分)
②∵另一点D与D(1;2)关于x轴对称;
∴D(1,-2).(11分)25、略
【分析】【分析】根据OA=OB,得到△AOB是等腰直角三角形,则△NBF也是等腰直角三角形,由于P的纵坐标是b,因而F点的纵坐标是b,即FM=b,则得到AF=b,同理BE=a,根据(a,b)是函数y=的图象上的点,因而b=,ab=,则即可求出AF•BE.【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度绿色仓储仓房买卖合同范本环保解读3篇
- 2025年度旅游单项服务保障合同4篇
- 2024-2025学年高中英语Unit4Breakingboundaries突破语法大冲关教师用书外研版选择性必修第二册
- 2024-2025学年新教材高中历史第八单元20世纪下半叶世界的新变化第18课冷战与国际格局的演变课时作业含解析新人教版必修中外历史纲要下
- 二零二五版工程招投标与合同管理法律法规汇编及解读3篇
- 2024版汽车维修工具套件租赁合同
- 2024版广西事业单位聘用合同样板
- 2025年屋顶雨水排水管及配套设施销售与安装服务合同2篇
- 二零二五年度教育合作办班合同范本3篇
- 2024版汽车修理厂土地租赁合同
- 2023年上海英语高考卷及答案完整版
- 西北农林科技大学高等数学期末考试试卷(含答案)
- 金红叶纸业简介-2 -纸品及产品知识
- 《连锁经营管理》课程教学大纲
- 《毕淑敏文集》电子书
- 颈椎JOA评分 表格
- 员工岗位能力评价标准
- 定量分析方法-课件
- 朱曦编著设计形态知识点
- 110kV变电站工程预算1
- 某系统安全安全保护设施设计实施方案
评论
0/150
提交评论