平行四边形复习课教案(同名10668)_第1页
平行四边形复习课教案(同名10668)_第2页
平行四边形复习课教案(同名10668)_第3页
平行四边形复习课教案(同名10668)_第4页
平行四边形复习课教案(同名10668)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《平行四边形》复习课教案【教学目标】1、进一步理解平行四边形、矩形、菱形、正方形的概念及其相互联系;2、掌握平行四边形、矩形、菱形、正方形的性质和判定;3、会把各种平行四边形的相关知识进行结构化整理。【教学重点】1、平行四边形与各种特殊平行四边形的区别。2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率【教具准备】三角板。【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们首先完成下面几道练习题,请看黑板。(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1)AB=CD,AD=BC(平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD,AC⊥BD(正方形)(5)AB=CD,∠A=∠C(?)2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。3、顺次连结矩形ABCD各边中点所成的四边形是菱形。4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。(二)归纳整理,形成体系1、性质判定,列表归纳平行四边形矩形菱形正方形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定1、两组对边分别平行;2、两组对边分别相等;3、一组对边平行且相等;4、两组对角分别相等;5、两条对角线互相平分.1、有三个角是直角的四边形;2、有一个角是直角的平行四边形;3、对角线相等的平行四边形.1、四边相等的四边形;2、对角线互相垂直的平行四边形;3、有一组邻边相等的平行四边形。4、每条对角线平分一组对角的四边形。1、有一个角是直角的菱形;2、对角线相等的菱形;3、有一组邻边相等的矩形;4、对角线互相垂直的矩形;对称性只是中心对称图形既是轴对称图形,又是中心对称图形面积S=ahS=abS=S=a22、基础练习:(1)矩形、菱形、正方形都具有的性质是(C)A.对角线相等(距、正)B.对角线平分一组对角(菱、正)C.对角线互相平分D.对角线互相垂直(菱、正)(2)、正方形具有,矩形也具有的性质是(A)A.对角线相等且互相平分B.对角线相等且互相垂直C.对角线互相垂直且互相平分D.对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定(D)A.正方形B.菱形C.矩形D.平行四边形都是中心对称图形,A、B、C都是平行四边形(4)、矩形具有,而菱形不一定具有的性质是(B)A.对角线互相平分B.对角线相等C.对边平行且相等D.内角和为3600问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。在△FCG和△FDA中∴△△FCG和△FDA(ASA)∴CG=DA∵AE=DC+CE,∴AE=CG+CE=GE,2-3∴∠4=∠G,2-3∴∠3=∠4,∴AF平分∠DAE.思考:如果用“截取法”,即在AE上取点G,使AG=AD,再连结GF、EF(如图2-3),这样能证明吗?三、综合训练,总结规律(一)综合练习,提高解题能力在例2中,若将条件“AE=DC+CE”和结论“AF平分∠DAE”对换,所得命题正确吗?为什么?你有几种证法?作22.已知:如图,在□ABCD中,AE⊥BD于E,CF⊥BD于F,作2G、H分别是BC、AD的中点.求证:四边形EGFH是平行四边形.(用两种方法)(二)课堂小结,领悟思想方法1.一题多变,举一反三。经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获。也只有这样,才能做到举一反三,提高应变能力。2.一题多解,触类旁通。在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论