版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(六)平行关系的判定一、选择题(每小题3分,共18分)1.(2022·咸阳高一检测)不在同始终线上的三点A,B,C到平面α的距离相等,且Aα,则()A.α∥平面ABCB.△ABC中至少有一边平行于αC.△ABC中至多有两边平行于αD.△ABC中只可能有一条边与α平行【解析】选B.△ABC的三顶点有可能在平面α的同侧或异侧,在同侧时,△ABC的三条边都与平面α平行;在异侧时,△ABC的一条边与平面α平行.2.已知平面α,β,直线a,b,c,若aα,bα,cα,a∥b∥c,且a∥β,b∥β,c∥β,则平面α与β的位置关系为()A.平行 B.相交C.平行或相交 D.以上都不对【解析】选C.由题意可知,平面α内不愿定有两条相交直线与平面β平行,所以平面α与β有可能平行,也有可能相交.3.(2022·西安高一检测)在空间四边形ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3.则对角线AC和平面DEF的位置关系是()A.平行 B.相交C.包含 D.平行或相交【解析】选A.如图所示,由AEEB=CFFB=13得BEBA=BFBC=34,所以EF34.经过平面α外两点,作与α平行的平面,则这样的平面可以作()A.1个或2个 B.0个或1个C.1个 D.0个【解析】选B.当两点确定的直线与α平行时,可作一个平面与α平行;当过两点的直线与α相交时,不能作与α平行的平面.5.设m,n是平面α内的两条不同直线,a,b是平面β内的两条相交直线,能使α∥β的条件是()A.m∥β且a∥α B.m∥a且n∥bC.m∥β且n∥β D.m∥β且n∥b【解析】选B.由于a,b是平面β内的两条相交直线,a∥m,b∥n,则m,n也是α内的两条相交直线,由平面与平面平行的判定定理知α∥β.6.如图所示,P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出五个结论:①OM∥PD;②OM∥平面PCD;③OM∥平面PDA;④OM∥平面PBA;⑤OM∥平面PBC.其中正确的个数是()A.1 B.2 C.3 D.4【解析】选C.①正确.由于ABCD是矩形,AC∩BD=O,所以O为BD的中点.又由于M为PB的中点,所以OM∥PD.②正确.由①知OM∥PD,又OM⊈平面PCD,PD平面PCD,OM∥平面PCD.③正确.与②同理,可证OM∥平面PDA.④错误.OM∩平面PBA=M.⑤错误.OM∩平面PBC=M.【举一反三】本题中,若OM平面α,且平面α∥平面PCD,试作出平面α与BC的交点.【解析】取BC的中点N,连接MN,ON,如图所示,则BC∩平面α=N.由于OM∥PD,OM⊈平面PCD,PD平面PCD,所以OM∥平面PCD,由于M,N是PB,BC的中点,所以MN∥PC,又MN⊈平面PCD,PC平面PCD,所以MN∥平面PCD,又OM∩MN=M,OM,MN平面OMN,所以平面OMN∥平面PCD,平面OMN即为平面α.二、填空题(每小题4分,共12分)7.(2022·吉安高一检测)在空间四边形ABCD中,M∈AB,N∈AD,若AMMB=ANND【解析】在平面ABD中,AMMB=ANND又MN⊈平面BCD,BD平面BCD,所以MN∥平面BCD.答案:平行8.(2022·阜阳高二检测)如图正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,CD的中点,N是BC的中点,点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.【解析】连接FH,HN,FN,由于HN∥DB,FH∥D1D,HN∩FH=H,DB∩D1D=D,所以平面FHN∥平面B1BDD1,所以平面FHN中的任意一条直线与平面B1BDD1平行,又M点在平面EFGH上运动,所以当M∈FH时都有MN∥平面B1BDD1.答案:M∈FH【误区警示】本题易毁灭M为CD的中点,即M与H重合时MN∥平面B1BDD1的错误.9.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________【解析】如图,设M,N,P,Q为所在棱的中点,易知平面MNPQ∥平面DBB1D1,则过M,N,P,Q这四个点中的任意两个点的直线与平面DBB1D1平行,这种情形有6条,同理,经过BC,CD,B1C1,C1D1四条棱的中点也有6条,故共有12条.答案:12三、解答题(每小题10分,共20分)10.(2022·湖北高考改编)如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1求证:直线BC1∥平面EFPQ.【解题指南】通过证明FP∥AD1,得到BC1∥FP,依据线面平行的判定定理即可得证.【证明】连接AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1由于F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP平面EFPQ,且BC1⊈平面EFPQ,故直线BC1∥平面EFPQ.11.如图,已知长方体ABCD-A1B1C1D1,求证:平面A1BD∥平面CB1D1【证明】在长方体ABCD-A1B1C1D1中,由于A1B∥D1C,D1C平面CB1D1,A1B⊈平面CB1D所以A1B∥平面CB1D1,同理可证A1D∥平面CB1D1,又由于A1B平面A1BD,A1D平面A1BD,A1B∩A1D=A1,所以平面A1BD∥平面CB1D1.一、选择题(每小题4分,共16分)1.(2022·西安高一检测)下列命题中,正确的是()A.平面α内的两条直线和平面β平行,则平面α∥平面βB.一条直线和平面α,β都平行,则α∥βC.若平面α∥β,则平面α内任始终线平行于βD.若直线l∥平面α,则l与平面α内全部直线平行【解析】选C.A错误.因这两条直线不愿定是相交直线;B错误,α与β还可能相交;C正确,由于线面无公共点.D错误,l还可能与α内的直线异面.2.已知直线l,m,平面α,β,下列命题正确的是()A.m∥l,l∥αm∥αB.l∥β,m∥β,lα,mαα∥βC.l∥m,lα,mβα∥βD.l∥β,m∥β,lα,mα,l∩m=Mα∥β【解析】选D.A中,m可能在α内,也可能与α平行;B中,α与β可能相交,也可能平行;C中,α与β可能相交,也可能平行;D中,l∩m=M,且l,m分别与平面β平行,依据面面平行的判定定理知α∥β.3.有一木块如图所示,点P在平面A′C′内,棱BC平行于平面A′C′,要经过P和棱BC将木料锯开,锯开的面必需平整,有N种锯法,N为()A.0 B.1 C.2 【解析】选B.由于BC∥平面A′C′,BC∥B′C′,所以在平面A′C′上过P作EF∥B′C′,则EF∥BC.所以过EF,BC所确定的平面锯开即可.又由于此平面唯一确定,所以只有一种锯法.4.(2022·蚌埠高一检测)下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形为()A.①② B.①④ C.②③ D.②④【解析】选B.①连接BC,则平面ABC∥平面MNP,所以AB∥平面MNP.故①正确.对于②连接BC,取BC中点O,连接ON,则ON∥AB,所以AB与平面MNP相交,不平行.③AB与平面PMN相交,不平行,所以③不合适.④由于AB∥NP,所以AB∥平面MNP,故④正确.二、填空题(每小题5分,共10分)5.已知a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,现给出六个命题:①a∥c,b∥ca∥b; ②a∥γ,b∥γa∥b;③c∥α,c∥βα∥β; ④α∥γ,β∥γα∥β;⑤c∥α,a∥ca∥α; ⑥a∥γ,α∥γa∥α.正确命题是________(填序号).【解析】直线平行或平面平行能传递,故①④正确.②中,a与b还可能异面或相交.③中α与β还可能相交.⑤中还可能aα,⑥中a可能在平面α内,故不正确.故正确命题是①④.答案:①④6.如图所示,在四周体ABCD中,M,N分别是△ACD,△BCD的重心,则四周体的四个面中与MN平行的是________________.【解析】连接AM并延长,交CD于E,连接BN,并延长交CD于F,由重心性质可知,E,F重合为一点,且该点为CD的中点E,由EMMA=ENNB=12,得MN∥答案:平面ABC、平面ABD三、解答题(每小题12分,共24分)7.如图,已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.【解题指南】将面面平行转化为线面平行解决.【证明】由于PM∶MA=BN∶ND=PQ∶QD,所以MQ∥AD,NQ∥BP,由于BP平面PBC,NQ⊈平面PBC,所以NQ∥平面PBC.又底面ABCD为平行四边形,所以BC∥AD,所以MQ∥BC.由于BC平面PBC,MQ⊈平面PBC,所以MQ∥平面PBC.又MQ∩NQ=Q,依据平面与平面平行的判定定理,得平面MNQ∥平面PBC.8.已知底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE∶ED=2∶1.在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论,若存在,请说出点F的位置.【解题指南】先直观猜想推断点F的位置,再通过证明,说明所选点F符合条件.【解析】如图,连接BD交AC于O点,连接OE,过B点作OE的平行线交PD于点G,过点G作GF∥CE,交PC于点F,连接BF.由于BG∥OE,BG⊈平面AEC,OE平面AEC,所以BG∥平面AEC.同理,GF∥平面AEC,又BG∩GF=G.所以平面BGF∥平面AEC,所以BF∥平面AEC.由于BG∥OE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024牛肉供应链优化与物流配送合同
- 二零二五年鲍鱼海鲜产品进出口合同2篇
- 2025年度中小企业财务辅导与融资对接服务合同3篇
- 2025年工艺品FOB出口合同标准范本2篇
- 2024年相机设备采购正式协议样本
- 2024特定事项补充协议范本版B版
- 2025年度淋浴房安全检测与安装服务合同4篇
- 2025年环保型小区车棚租赁与充电桩建设合同3篇
- 2025年度绿色生态园林景观项目苗木采购合同样本3篇
- 2025年度消防设施设备安全性能评估合同3篇
- 软件项目应急措施及方案
- 2025河北邯郸经开国控资产运营管理限公司招聘专业技术人才5名高频重点提升(共500题)附带答案详解
- 2024年民法典知识竞赛考试题库及答案(共50题)
- 2025老年公寓合同管理制度
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 2024中国汽车后市场年度发展报告
- 钣金设备操作培训
- 感染性腹泻的护理查房
- 天津市部分区2023-2024学年高二上学期期末考试 物理 含解析
- 水利工程招标文件样本
- 第17课 西晋的短暂统一和北方各族的内迁(说课稿)-2024-2025学年七年级历史上册素养提升说课稿(统编版2024)
评论
0/150
提交评论