2025年山东省泰安市中考数学模拟试卷(二)_第1页
2025年山东省泰安市中考数学模拟试卷(二)_第2页
2025年山东省泰安市中考数学模拟试卷(二)_第3页
2025年山东省泰安市中考数学模拟试卷(二)_第4页
2025年山东省泰安市中考数学模拟试卷(二)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年山东省泰安市中考数学模拟试卷(二)一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列各式,运算结果为负数的是()A.﹣(﹣2)﹣(﹣3) B.(﹣2)×(﹣3) C.(﹣2)﹣2 D.(﹣3)﹣32.(3分)光的传播速度约为300000km/s,太阳光照射到地球上大约需要500s,则太阳到地球的距离用科学记数法可表示为()A.15×107km B.1.5×109km C.1.5×108km D.15×108km3.(3分)抛物线y=﹣2x2+8x﹣1的顶点坐标为()A.(﹣2,7) B.(﹣2,﹣25) C.(2,7) D.(2,﹣9)4.(3分)如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为()A.30° B.60° C.30°或150° D.60°或120°5.(3分)若2x=3,4y=5,则2x﹣2y的值为()A. B.﹣2 C. D.6.(3分)如图,是一个工件的三视图,则此工件的全面积是()A.85πcm2 B.90πcm2 C.155πcm2 D.165πcm27.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2 B.3 C. D.48.(3分)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A. B.C. D.9.(3分)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为()A.km B.km C.km D.km10.(3分)某校为了了解七年级学生的身高情况(单位:cm,精确到1cm),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):分组一二三四五六七104﹣145145﹣150150﹣155155﹣160160﹣165165﹣170170﹣175人数612264根据以上信息可知,样本的中位数落在()A.第二组 B.第三组 C.第四组 D.第五组11.(3分)如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A. B. C.4 D.312.(3分)如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)13.(3分)化简:的结果为.14.(3分)关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是.15.(3分)已知y是x的一次函数,下表给出了部分对应值,则m的值是.x﹣125y5﹣1m16.(3分)如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为.17.(3分)如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为.18.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线OC将△COA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为.19.(3分)如图所示,△A′B′C′是由△ABC向右平移5个单位长度,然后绕B点逆时针旋转90°得到的(其中A′、B′、C′的对应点分别是A、B、C),点A′的坐标是(4,4)点B′的坐标是(1,1),则点A的坐标是.三、解答题(共7小题,满分63分)20.(7分)先化简、再求值:﹣a﹣2),其中a=﹣3.21.(7分)如图1,A、B两个转盘分别被分成三个、四个相同的扇形,分别转动A盘、B盘各一次(若指针恰好指在分割线上,则重转一次,直到指针指向一个数字为止).(1)用列表(或画树状图)的方法,求两个指针所指的区域内的数字之和大于7的概率;(2)如果将图1中的转盘改为图2,其余不变,求两个指针所指区域的数字之和大于7的概率.22.(9分)将一个量角器和一个含30度角的直角三角板如图(1)放置,图(2)是由它抽象出的几何图形,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OD.(1)求证:DB∥CF;(2)当OD=2时,若以O、B、F为顶点的三角形与△ABC相似,求OB.23.(10分)某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?24.(10分)如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)求证:FD2=FB•FC;(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.25.(10分)如图,△OAB是边长为2的等边三角形,过点A的直线+m与x轴交于点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线解析式;(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.26.(10分)如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.

参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列各式,运算结果为负数的是()A.﹣(﹣2)﹣(﹣3) B.(﹣2)×(﹣3) C.(﹣2)﹣2 D.(﹣3)﹣3【分析】先计算各选项,再根据负数的定义判断.【解答】解:∵A、原式=5,B、原式=6,C、原式=,D、原式=.故选:D.【点评】注意负数的奇次幂仍是负数.2.(3分)光的传播速度约为300000km/s,太阳光照射到地球上大约需要500s,则太阳到地球的距离用科学记数法可表示为()A.15×107km B.1.5×109km C.1.5×108km D.15×108km【分析】本题考查学生对科学记数法的掌握和对题意的理解.科学记数法要求前面的部分是大于或等于1,而小于10,小数点向左移动8位,应该为1.5×108.【解答】解:依题意得:太阳到地球的距离=300000×500=150000000=1.5×108km.故选C.【点评】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n表示整数,n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.3.(3分)抛物线y=﹣2x2+8x﹣1的顶点坐标为()A.(﹣2,7) B.(﹣2,﹣25) C.(2,7) D.(2,﹣9)【分析】代入顶点坐标公式,或用配方法将抛物线解析式写成顶点式,确定顶点坐标.【解答】解:∵y=﹣2x2+8x﹣1=﹣2(x﹣2)2+7,∴顶点坐标为(2,7).故选C.【点评】要求学生熟记顶点坐标公式或者配方法的解题思路.4.(3分)如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为()A.30° B.60° C.30°或150° D.60°或120°【分析】连接OA、OB,过O作AB的垂线,通过解直角三角形,易得出∠AOB的度数;由于弦AB所对的弧有两段:一段是优弧,一段是劣弧;所以弦AB所对的圆周角也有两个,因此要分类求解.【解答】解:如图,连接OA、OB,过O作AB的垂线;在Rt△OAC中,OA=1,AC=;∴∠AOC=60°,∠AOB=120°;∴∠D=∠AOB=60°;∵四边形ADBE是⊙O的内接四边形,∴∠AEB=180°﹣∠D=120°;因此弦AB所对的圆周角有两个:60°或120°;故选:D.【点评】本题考查的是圆周角定理、垂径定理以及圆内接四边形的性质;注意:弦AB所对圆周角有两个,不要漏解.5.(3分)若2x=3,4y=5,则2x﹣2y的值为()A. B.﹣2 C. D.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.【点评】本题主要考查了同底数的幂的除法运算法则,是把运算法则逆用.6.(3分)如图,是一个工件的三视图,则此工件的全面积是()A.85πcm2 B.90πcm2 C.155πcm2 D.165πcm2【分析】如图,首先得知这个几何体为一个圆锥,然后根据题意得出它的半径,高以及母线长,继而球出它的表面积.【解答】解:由图可知这个几何体是个圆锥,且它的底面圆的半径是5cm,高12cm,母线长=13cm,它的表面积=侧面积+底面积=π×5×13+π×5×5=90πcm2.故选:B.【点评】可先根据三视图确定这个几何体的形状,然后根据其表面积计算方法进行计算.7.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2 B.3 C. D.4【分析】利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.【解答】解:在△ABC中,D、E分别是BC、AC的中点∴DE∥AB∴∠EDC=∠ABC∵BF平分∠ABC∴∠EDC=2∠FBD在△BDF中,∠EDC=∠FBD+∠BFD∴∠DBF=∠DFB∴FD=BD=BC=×6=3.故选:B.【点评】三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.(3分)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A. B.C. D.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.9.(3分)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为()A.km B.km C.km D.km【分析】根据已知作图,由已知可得到△ABC是直角三角形,从而根据三角函数即可求得AC的长.【解答】解:如图.由题意可知,AB=5km,∠2=30°,∠EAB=60°,∠3=30°.∵EF∥PQ,∴∠1=∠EAB=60°又∵∠2=30°,∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣30°=90°.∴△ABC是直角三角形.又∵MN∥PQ,∴∠4=∠2=30°.∴∠ACB=∠4+∠3=30°+30°=60°.∴AC===(km).故选:A.【点评】本题是方向角问题在实际生活中的运用,解答此类题目的关键是根据题意画出图形利用解直角三角形的相关知识解答.10.(3分)某校为了了解七年级学生的身高情况(单位:cm,精确到1cm),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):分组一二三四五六七104﹣145145﹣150150﹣155155﹣160160﹣165165﹣170170﹣175人数612264根据以上信息可知,样本的中位数落在()A.第二组 B.第三组 C.第四组 D.第五组【分析】从表格和扇形图上可知第二组的12人占了总数的12%,从而求出第三组人数;第五组为24人,第六组为10人,中位数应该是第50和51个数的平均数,从表格可知第50和51个数落在第四组中.【解答】解:总数为12÷12%=100人,第三组人数为100×18%=18人,中位数应该是第50和51个数的平均数,从表格可知第50和51个数落在第四组中.故选:C.【点评】本题考查的是表格和扇形统计图的综合运用.读懂表格和统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了对中位数的认识.11.(3分)如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A. B. C.4 D.3【分析】根据已知条件和图形折叠的性质可得:∠BDC=180°﹣2×30°=120°,BD=DC=DC'=2.解三角形BC′D求解.【解答】解:∵AD是△ABC的中线,∴BD=DC=BC=2,∠ADC=30°,∴∠C′DA=∠ADC=30°∴∠BDC′=120°,BD=DC'=2,∴∠DBC′=∠BC′D=30°,过点D作DE⊥BC′于E,∴DE=BD=1,∴BE==∴BC′=2BE=2.故选:A.【点评】主要考查了图形的翻折变换和直角三角形的有关性质.12.(3分)如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为()A. B. C. D.【分析】先根据图形之间的关系可知S△OAD=S△OEC=S矩形OABC,则可求得△OCE的面积,根据反比例函数系数的几何意义即可求解.【解答】解:∵双曲线y=(k>0)经过矩形OABC的边BC的中点E,∴S△OAD=S△OEC=S矩形OABC=S梯形ODBC=1,∴k=2,则双曲线的解析式为.故选:B.【点评】本题主要考查了反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.二、填空题(共7小题,每小题3分,满分21分)13.(3分)化简:的结果为.【分析】运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.【解答】解:原式=﹣20=﹣14.【点评】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.14.(3分)关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是k≥.【分析】由于已知方程有实数根,则△≥0,由此可以建立关于k的不等式,解不等式就可以求出k的取值范围.【解答】解:由题意知△=(2k+1)2+4(2﹣k2)=4k+9≥0,∴k≥.【点评】总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.(3分)已知y是x的一次函数,下表给出了部分对应值,则m的值是﹣7.x﹣125y5﹣1m【分析】一次函数的一般形式为y=kx+b,根据待定系数法即可求解.【解答】解:设该一次函数的解析式为y=kx+b.由题意得,解得,故m的值是﹣7.【点评】本题要注意利用一次函数的特点,列出方程组,求出未知数.16.(3分)如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为4:9.【分析】要求图1中的圆与扇环的面积比,就要先根据面积公式先计算出面积.再计算比.【解答】解:设正方形的边长为2,则圆的面积为π,扇环的面积为(4π﹣π)=π,所以图1中的圆与扇环的面积比为4:9.【点评】此题主要考查扇环面积的求法.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.17.(3分)如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为y=x2+4x(0<x≤6).【分析】根据勾股定理可得BD=10,因为DM=x,所以BM=10﹣x,过点M作ME⊥BC于点E,可得到△BME∽△BDC,然后根据相似三角形的性质得到=,由此即可用x表示ME,最后根据三角形的面积公式即可确定函数关系式.【解答】解:∵AB=8,BC=6,∴CD=8,∴BD=10,∵DM=x,∴BM=10﹣x,如图,过点M作ME⊥BC于点E,∴ME∥DC,∴△BME∽△BDC,∴=,∴ME=8﹣x,而S△MBP=×BP×ME,∴y=x2+4x,P不与B重合,那么x>0,可与点C重合,那么x≤6.故填空答案:y=x2+4x(0<x≤6).【点评】本题的难点是利用相似得到△MBP中BP边上的高ME的代数式,此题主要考查了利用相似三角形的性质确定函数关系式.18.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线OC将△COA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为.【分析】根据题意有:沿△ABC的中线CM将△CMA折叠,使点A落在点D处,若CD恰好与MB垂直,可得:∠B=2∠A,且∠ACB=90°,故∠A=30°,则tanA的值为.【解答】解:在直角△ABC中,∴∠ACM+∠MCB=90°,CM垂直于斜边AB,∴∠ABC+∠MCB=90°,∴∠B=∠ACM,OC=OA(直角三角形的斜边中线等于斜边一半).∴∠A=∠1.又∵∠1=∠2,∴∠A=30°.∴tanA=tan30°=.【点评】本题考查折叠的性质和特殊角度的三角函数值.19.(3分)如图所示,△A′B′C′是由△ABC向右平移5个单位长度,然后绕B点逆时针旋转90°得到的(其中A′、B′、C′的对应点分别是A、B、C),点A′的坐标是(4,4)点B′的坐标是(1,1),则点A的坐标是(﹣1,﹣2).【分析】△A′B′C′是由△ABC向右平移5个单位长度,然后绕B′点逆时针旋转90°得到的,则△ABC可以看成由△A′B′C′绕点B顺时针旋转90°,然后向左平移5个单位长度而得到点A的坐标.【解答】解:把点(4,4)绕点B顺时针旋转90°,然后向左平移5个单位长度而得到点的坐标是(﹣1,﹣2).【点评】运用逆向思维的方法,解题更方便且易于理解.三、解答题(共7小题,满分63分)20.(7分)先化简、再求值:﹣a﹣2),其中a=﹣3.【分析】这道求代数式值的题目,通常做法是先把代数式化简,然后再代入求值.【解答】解:原式=,=,=,=;(5分)当a=﹣3时,原式=﹣.【点评】本题的关键是化简,然后把给定的值代入求值.21.(7分)如图1,A、B两个转盘分别被分成三个、四个相同的扇形,分别转动A盘、B盘各一次(若指针恰好指在分割线上,则重转一次,直到指针指向一个数字为止).(1)用列表(或画树状图)的方法,求两个指针所指的区域内的数字之和大于7的概率;(2)如果将图1中的转盘改为图2,其余不变,求两个指针所指区域的数字之和大于7的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:(1)树状图如下:两个指针所指的区域的数字之和共有12种情况,其中和大于7的6种,因此两个指针所知区域内的数字之和大于7的概率为;(2)将标有“6”的半圆等分成两个扇形,相当于将(1)中树状图的“7”处改为“6”,则两个指针所指的区域内的数字之和大于7的概率为.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.(9分)将一个量角器和一个含30度角的直角三角板如图(1)放置,图(2)是由它抽象出的几何图形,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OD.(1)求证:DB∥CF;(2)当OD=2时,若以O、B、F为顶点的三角形与△ABC相似,求OB.【分析】(1)连接OF.判断OBCF是平行四边形;(2)首先分析相似三角形的对应顶点,从而得到角对应相等,再运用解直角三角形的知识求解.【解答】(1)证明:连接OF,如图.∵AB切半圆O于F,∴OF⊥AB.∵CB⊥AB,∴BC∥OF.∵BC=OD,OD=OF,∴BC=OF.∴四边形OBCF是平行四边形,∴DB∥CF.(2)解:以O、B、F为顶点的三角形与△ABC相似,∠OFB=∠ABC=90°.∵∠OBF=∠BFC,∠BFC>∠A,∴∠OBF>∠A,∵△OFB与△ABC相似,∴∠A与∠BOF是对应角.∴∠BOF=30°.∴OB==;故OB的长为.【点评】此题综合运用了平行四边形的性质和判定.能够正确分析相似三角形的对应顶点,从而得到有关的角对应相等.23.(10分)某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?【分析】(1)设A和B的进价分别为x和y,件数×进价=付款,可得到一个二元一次方程组,解即可.(2)获利=利润×件数,设购买A商品a件,则购买B商品(40﹣a)件,由题意可得到两个不等式,解不等式组即可.【解答】解:(1)设A、B两种纪念品的进价分别为x元、y元.由题意,得(2分)解之,得(4分)答:A、B两种纪念品的进价分别为20元、30元.(5分)(2)设商店准备购进A种纪念品a件,则购进B种纪念品(40﹣a)件.由题意,得,(7分)解之,得:30≤a≤32.(8分)设总利润为w,∵总获利w=5a+7(40﹣a)=﹣2a+280是a的一次函数,且w随a的增大而减小,∴当a=30时,w最大,最大值w=﹣2×30+280=220.∴40﹣a=10.∴当购进A种纪念品30件,B种纪念品10件时,总获利不低于216元,且获得利润最大,最大值是220元.(10分)【点评】利用了总获利=A利润×A件数+B利润×B件数,件数×进价=付款,还用到了解二元一次方程组以及二元一次不等式组的知识.24.(10分)如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)求证:FD2=FB•FC;(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.【分析】(1)要求证:FD2=FB•FC,只要证明△FBD∽△FDC,从而转化为证明∠FDC=∠FBD;(2)GD与EF垂直,要证DG⊥EF,只要证明∠5+∠1=90°,即转化为证明∠3=∠4即可.【解答】证明:(1)∵E是Rt△ACD斜边中点.∴DE=EA.∴∠A=∠2.∵∠1=∠2.∴∠1=∠A.∵∠FDC=∠CDB+∠1=90°+∠1,∠FBD=∠ACB+∠A=90°+∠A.∴∠FDC=∠FBD.∵∠F是公共角.∴△FBD∽△FDC.∴.∴FD2=FB•FC;(2)GD⊥EF,理由如下:∵DG是Rt△CDB斜边上的中线,∴DG=GC,∴∠3=∠4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论