




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【单元分析】本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了8条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论。运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论。在这之前,学生已经对图形的性质及其相互关在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础。【单元目标】(2)直角三角形的性质定理和判定定理;(1)会运用等腰三角形的性质和判定定理解决相关问题;(2)直角三角形的性质定理和判定定理解决简单的实际问题;3.情感态度与价值观(1)经历由情景引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数(2)感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思【单元重点】在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理。【单元难点】明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。【教学思路】1.对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。2.对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。3.证明过程中注意揭示蕴含其中的数学思想方法,如转化、归纳、类比等。4.作为初中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规范的证明表述过程,达成课程标准对证明表述的要求。【单元课时安排】【单元课时安排】课题等腰三角形直角三角形线段的垂直平分线课时 【教学目标】1.知识与技能理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理。2.过程与方法经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力。3.情感态度与价值观启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩【教学重点】经历“探索——发现一一猜想——证明”的过程。【教学难点】用综合法证明有关三角形和等腰三角形的一些结论。【教学方法】讲授法【课时安排】第一课时【教学目标】1.知识与技能能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理。2.过程与方法经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力。3.情感态度与价值观启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证【教学重点】【教学重点】探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法。【教学难点】明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。【教学过程】教学过程第一环节:回顾旧知导出公理提请学生回忆并整理已经学过的8条基本事实中的5条:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;教学随笔 新北师大版八年级数学下册--全册教案3.两边夹角对应相等的两个三角形全等(SAS4.两角及其夹边对应相等的两个三角形全等(ASA5.三边对应相等的两个三角形全等(SSS在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。已知:如图,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.第二环节:折纸活动探索新知在提问:“等腰三角形有哪些性质?以前是如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明可以让学生先独自折纸观察、探索并写出等腰三角形的性质,然后再以六人为小组进行交流,互相弥补不足。AAABDCBDCD第三环节:明晰结论和证明过程在学生小组合作的基础上,教师通过分析、提问,和学生一起完成以上两个个性质定理的证明,注意最好让两至三个学生板演证明,其余学生挑选其一证明.其后,教师通过课件汇总各小组的结果以及具体证明方法,给学(1)等腰三角形的两个底角相等;(2)等腰三角形顶角的平分线、底边中线、底边上高三条线重合第四环节:随堂练习巩固新知且AC⊥BD,AC=BC=CD,第五环节:课堂小结让学生畅谈收获,包括具体结论以及其中的思想方法等。第六环节:布置作业【板书设计】 1.1等腰三角形(一)又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),【教学反思】第二课时【教学目标】1.知识与技能进一步熟悉证明的基本步骤和书写格式,体会证明的必要性。进一步熟悉证明的基本步骤和书写格式,体会证明的必要性。2.过程与方法让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎3.情感态度与价值观体验数学活动中的探索与创造,感受数学的严谨性。【教学重点】用面积法验证勾股定理。【教学难点】用综合法证明有关三角形和等腰三角形的一些结论。【教学过程】教学过程第一环节:提出问题,引入新课在回忆上节课等腰三角形性质的基础上,提出问题:在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一第二环节:自主探究在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。你能证明你的猜测吗?试作图,写出已知、求证和证明过程;教学随笔通过学生的自主探究和同伴的交流,学生一般都能在直观猜测、测量验等腰三角形两个底角的平分线相等;等腰三角形腰上的中线相等.并对这些命题给予多样的证明。如对于“等腰三角形两底角的平分线相等”,学生得到了下面的证明方已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的角平分线.求证:BD=CE.证法1:∵AB=AC,A∴∠ABC=∠ACB(等边对等角).∴∠1=∠2.∠ACB=∠ABC,BC=CB,∠1=∠2.∴△BDC≌△CEB(ASA).∴BD=CE(全等三角形的对应边相等)证法2:证明:∵AB=AC,∴∠ABC=∠ACB.又∵∠3=∠4.∠3=∠4,AB=AC,∠A=∠A.∴△ABD≌△ACE(ASA).∴BD=CE(全等三角形的对应边相等).第三环节:经典例题变式练习提请学生思考,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思考的基础上,研究课本“议一议”: EQ\*jc3\*hps31\o\al(\s\up11(1),3)如果AD=AC,AB,那么BD=CE吗?如果AC,AB呢?由此你得到什么结论?第四环节:拓展延伸,探索等边三角形性质提请学生在上面等要三角形性质定理的基础上,思考等边三角形的特殊性质:等边三角形三个内角都相等并且每个内角都等于60°.求证:∠A=∠B=∠C=60°.证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).又∵∠A+∠B+∠C=180°(三角形内角和定理),∴∠A=∠B=∠C=60°.学生一般都能得到这些定理的证明,能规范地写出对于“等边三角形三个内角都相等并且每个内角都等于60°”的证明过程:在探索得到了等边三角形的性质的基础上,让学生独立完成以下练习。A1.如图,已知△ABC和△BDE都是等边三角形.求证:AE=CDABECD活动意图:在巩固等边三角形的性质的同时,进一步掌握综合证明法的基本要求和步骤,规范证明的书写格式。第六环节:探讨收获课时小结本节课我们通过观察探索、发现并证明了等腰三角形中相等的线段,并第七环节:布置作业【板书设计】 1.2等腰三角形(二)已知:在ΔABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).【教学反思】第三课时【教学目标】1.知识与技能探索等腰三角形判定定理。2.过程与方法理解等腰三角形的判定定理,并会运用其进行简单的证明。3.情感态度与价值观培养学生的逆向思维能力。【教学重点】理解等腰三角形的判定定理。【教学难点】了解反证法的基本证明思路,并能简单应用。【教学过程】教学随笔教学过程教学随笔第一环节:复习引入通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角第二环节:逆向思考,定理证明A教师:上面,我们改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途角相等的三角形是等腰三角形吗?A[生]如图,在△ABC中,∠B=∠C,要想证只要构造两个全等的三角形,使AB与AC[生]由前面定理的证明获得启发,比如作BC的中线,或作A的平分线,或作BC上的高,都可以把△ABC分成两个全等的三角形.[师]很好.同学们可在练习本上尝试一下是否如此,然后分组讨论.[生]我们组发现,如果作BC的中线,虽然把△ABC分成了两个三角但无法用公理和已证明的定理证明它们全等.因为我们得到的条件是两个三角形对应两边及其一边的对角分别相等,是不能够判断两个三角形全等的.后两种方法是可行的.[师]那么就请同学们任选一种方法按要求将推理证明过程书写出来.(教师可让两个同学在黑板上演示,并对推理证明过程讲评)[师]我们用“反过来”思考问题,获得并证明了一个非常重要的定理——等腰三角形的判定定理:有两个角相等的三角形是等腰三角形.这一定理可以简单叙述为:等角对等边.我们不仅发现了几何图形的对称美,也发现了数学语言的对称美.第三环节:巩固练习将书中的随堂练习提前到此,是为了及时巩固判定定理。引导学生进行求证:AB=AC.证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),AEQ\*jc3\*hps31\o\al(\s\up4(1),2)D∠2=∠C(两直线平行,内错角相等).第四环节:适时提问导出反证法BC我们类比归纳获得一个数学结论,“反过来”思考问题也获得了一个数学结论.如果否定命题的条件,是否也可获得一个数学结论吗?我们一起来“想一想”:小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?有学生提出:“我认为这个结论是成立的.因为我画了几个三角形,观这种从正面人手很难证明的结论,我们有没有别的证明思路和方法呢?A如图,在△ABC中,已知∠B≠∠C,此时AB与Ac要么相等,要么不相等.A得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC你能理解他的推理过程吗?再例如,我们要证明△ABC中不可能有两个直角,也可以采用这位同学的证法,假设有两个角是直角,不妨设∠A=90°,∠B=90°,可得∠A+∠ B=180°,但△AB∠A+∠B+∠C=180°,“∠A+∠B=180°”与“∠A+∠B+∠C=180°”相矛盾,因此△ABC中不可能有两个直角.引导学生思考:上一道面的证法有什么共同的特点呢?引出反证法。都是先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法.接着用“反过来”思考问题的方法获得并证明了等腰三角形的判定定理“等角对等边”,最后结合实例了解了反证法的含义.第五环节:拓展延伸活动过程与效果:在一节课结束之际,为培养学生思维的综合性、灵活性特安排了2个练习。一个是通过平行线、角平分线判定三角形的形状,再通过线段的转换求图形的周长。另一个是一个开放性的题,考察学生多角度多维度思考问题的能力。学生在独立思考的基础上再小组交流。求△AMN的周长..BC2.现有等腰三角形纸片,如果能从一个角的顶点出发,将原纸片一次剪开成两块等腰三角形纸片,问此时的等腰三角形的顶角的度数?第六环节:课堂小结(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.(4)举例谈谈用反证法说理的基本思路第七环节:布置作业【板书设计】1.1等腰三角形(三)求证:AB=AC.证明:∵AD∥BC,∠2=∠C(两直线平行,内错角相等).∴AB=AC(等角对等边).AEQ\*jc3\*hps31\o\al(\s\up6(1),2)D【教学反思】第四课时【教学目标】 1.知识与技能理解等边三角形的判别条件及其证明,理解含有30º角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。2.过程与方法3.情感态度与价值观在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心。【教学重点】等边三角形判定定理的发现与证明。【教学难点】了解反证法的基本证明思路,并能简单应用。【教学过程】教学随笔教学过程教学随笔第一环节:提问问题,引入新课教师回顾前面等腰三角形的性质和判定定理的基础上,直接提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等腰三角形呢?从而引入新课。开门见山,引入新课,同时回顾,也为后续探索提供了铺垫。(教师应给学生自主探索、思考的时间)第二环节:自主探索学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结等腰三角形性质等边对等角判定的条件性质等边对等角“三线合一”即等腰等边三角形三个角三个角都相等的三角形是等边三角形第三环节:实际操作提出问题活动内容:教师直接提出问题:我们还学习过直角三角形,今天我们研究一个特殊的直角三角形:含30°角的直角三角形。拿出三角板,做一做:用含30°角的两个三角尺,你能拼成一个怎样的三角形三角形吗?在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由.让学生经历拼摆三角尺的活动,发现结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. C=90°,∠BAC=30°.2分析:从三角尺的拼摆过程中得BAD到启发,延长BC至D,使CD=BC,连接AD.证明:在△ABC中,∠ACB=90°,∠BAC=30°∠B=60°.A延长BC至D,使CD=BC,连接AD(如A的等腰三角形是等边三角形).BB第四环节:变式训练巩固新知ADCD直接提请学生思考刚才命题的逆命题:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°吗?如果是,请你证明它.在师生分析的基础上,给出证明:1AD.AA又∵AC=AC.∴AB=AD.11∴AB=AD=BD,即△ABD是等边三角形.呈现例题,在师生分析的基础上,运用所学的新定理解答例题。等腰三角形的底角为15°,腰长为2a,求腰上的高CD的长.分析:观察图形可以发现在Rt△ADC中,DABC的一个外角,而∠DAC=×15°=30°,根据在A--全册教C的直角边是斜边的一半,可求出CD.解:∵∠ABC=∠ACB=15°∴CD=2AC=2×2a=a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).第五环节:畅谈收获课时小结让学生对课堂学习进行小结,注意总结具体的知识、结论,以及解决问题的方法和蕴含其中的思想,如分类讨论思想、逆向思维等。第六环节:布置作业【板书设计】1.1等腰三角形(四)A证明:延长BC至D,使CD=BC,连又∵AC=AC.∴AB=AD.∴AB=AD=BD,即△ABD是等边三角形.AB.A【教学反思】【教学目标】1.知识与技能(1)掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法,并能应用定理解决与直角三角形有关的问题。(2)结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命2.过程与方法(1)进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 新北师大版八年级数学下册--全册教案发展抽象思维.(2)进一步掌握推理证明的方法,发展演绎推理的能力。3.情感态度与价值观体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用【教学重点】掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法。【教学难点】应用定理解决与直角三角形有关的问题。【教学方法】讲授法【课时安排】第一课时【教学目标】1.知识与技能掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法。2.过程与方法进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象3.情感态度与价值观在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心。【教学重点】掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法。【教学难点】结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定【教学过程】【教学过程】教学过程第一环节:创设情境,引入新课通过问题1,让学生在解决问题的同时,回顾直角三角形的一般性质。[问题1]一个直角三角形房梁如图所示,其中B教学随笔 新北师大版八年级数学下册--全册教案解决这个问题,主要利用了上节课已经证明的“30°角的直角三角形的教材中曾利用数方格和割补图形的方法得到了勾股定理.如果利用公理及由其推导出的定理,能够证明勾股定理吗?请同学们打开课本P18,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法.第二环节:讲述新课第二种方法请有兴趣的同学课后阅读.(1勾股定理及其逆定理的证明.证明:延长CB至D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE(如图),则△ABC≌△BED.对应边相等).∴四边形ACDE是直角梯形.90°=90°,12△ABE△ABC△△ABE△ABC△BED,AbCEcaB2教师用多媒体显示勾股定理内容,用课件演示勾股定理的条件和结论,并强调.具体如下:勾股定理:直角三角形两直角边的平方和等于斜边的平方.反过来,如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论.你能证明此结论吗?A师生共同来完成.已知:如图:在△ABC中,AB2+AC2=求证:△ABC是直角三角形.BC 与一个直角三角形全等,而得到∠A与对应角(构造的三角形的直角)相等,可证.则A′B′2+A′C′2.(勾股定理).A'∴∠A=∠A′=90°(全等三角形的对应角相等).因此,△ABC是直角三角形.总结得勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.(2互逆命题和互逆定理.观察上面两个命题,它们的条件和结论之间有怎样的关系?在前面的学习中还有类似的命题吗?上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件.这样的情况,在前面也曾遇到过.例如“两直线平行,内错角相等”,交换条件和结论,就得到“内错角相等,两直线平行”.又如“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边就等于斜边的一半”.交换此定那么这条直角边所对的锐角等于30°”。第三环节:议一议观察下面三组命题:学生以分组讨论形式进行,最后在教师的引导下得出命题与逆命题的区别与联系。让学生畅所欲言,体会逆命题与命题之间的区别与联系,要能够清晰地分别出一个命题的题设和结论,能够将一个命题写出“如果……;那么……”的形式,以及能够写出一个命题的逆命题。活动中,教师应注意给予适度的引导,学生若出现语言上不严谨时,要先让这个疑问交给学生来剖析,然后再总结。活动时可以先让学生观察下面如果两个角是对顶角,那么它们相等.如果两个角相等,那么它们是对顶角.如果小明患了肺炎,那么他一定发烧.如果小明发烧,那么他一定患了肺炎.三角形中相等的边所对的角相等.三角形中相等的角所对的边相等.上面每组中两个命题的条件和结论也有类似的关系吗?与同伴交流.不难发现,每组第二个命题的条件是第一个命题的结论,第二个命题的结论是第一个命题的条件.在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条相对于逆命题来说,另一个就为原命题. 再来看“议一议”中的三组命题,它们就称为互逆命题,如果称每组的第命题呢?在第一组中,原命题是真命题,而逆命题是假命题.在第二组中,原命题是真命题,而逆命题是假命题.在第三组中,原命题和逆命题都是真命题.由此我们可以发现:原命题是真命题,而逆命题不一定是真命题.第四环节:想一想要写出原命题的逆命题,需先弄清楚原命题的条件和结论,然后把结论变换成条件,条件变换成结论,就得到了逆命题.请学生写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题从而引导学生思考:原命题是真命题吗?逆命题一定是真命题吗?并通如果有些命题,原命题是真命题,逆命题也是真命题,那么我们称它们为互逆定理.其中逆命题成为原命题(即原定理)的逆定理.能举例说出我们已学过的互逆定理?如我们刚证过的勾股定理及其逆定理,“两直线平错角相等,两直线平行”.“全等三角形对应边相等”和“三边对应相等的三角形全等”、“等边对等角”和“等角对等边”等.第五环节:随堂练习说出下列命题的逆命题,并判断每对命题的真假;[分析]互逆命题和互逆定理的概念,学生接受起来应不会有什么困难,尤其是对以“如果……那么……”形式给出的命题,写出其逆命题较为容易,但对于那些不是以这种形式给出的命题,叙述其逆命题有一定困难.可先分析命题的条件和结论,然后写出逆命题.解:(1)多边形是四边形.原命题是真命题,而逆命题是假命题.(2)同旁内角互补,两直线平行.原命题与逆命题同为正.第六环节:课时小结这节课我们了解了勾股定理及逆定理的证明方法,并结合数学和生活中的例子了解逆命题的概念,会识别两个互逆命题,知道,原命题成立,其逆命题不一定成立,掌握了证明方法,进一步发展了演绎推理能力.第七环节:课后作业【板书设计】 新北师大版八年级数学下册--全册教案∴四边形ACDE是直角梯形.∴∠ABE=180°-(∠ABC+∠EBD)=180°-90°=90°,A22【教学反思】第二课时【教学目标】1.知识与技能能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性。2.过程与方法进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象3.情感态度与价值观进一步掌握推理证明的方法,发展演绎推理能力。【教学重点】能够证明直角三角形全等的“HL”的判定定理。【教学难点】进一步理解证明的必要性。【教学过程】【教学过程】教学过程第一环节:复习提问2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我教学随笔 新北师大版八年级数学下册--全册教案们能否通过作等腰三角形底边的高来证明“等边对等角”.要求学生完成,一位学生的过程如下:证明:过A作AD⊥BC,垂足为C,又∵AB=AC,AD=AD,∴△ABD≌△ACD.∴∠B=∠C(全等三角形的对应角相等)在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)”.也有学生认同上述的证明。第二环节:引入新课(1“HL”定理.由师生共析完成求证:Rt△ABC≌Rt△A′B′C′证明:在Rt△ABC中,AC=AB2一AA'BC2(勾股定理).定理斜边和一条直角边对应相等的两个直角三角形全等.从而肯定了第一位同学通过作底边的高证明两个三角形全等,从而得到“等边对B等角”的证法是正确的.E(2)斜边及一锐角对应相等的两个直角(3)两条直角边对应相等的两个直角三角形全等;(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全)一般可顺利通过,这里教师将讲解的重心放在了 问题(4学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.分别是AC、A'C'边上的中线且BD—B'D'(如图).求证:Rt△ABC≌Rt△A'B'C'.CD=C'D'.ADA'D'C'通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教第三环节:做一做问题你能用三角尺平分一个已知角吗?请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证第四环节:议一议把它们分别写出来.这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案.A'B'C'.分析:要证△ABC≌△一组边AC=A'C',一组角∠ACDBA'D'B'ACB=∠A'C'B'.如果寻求∠A=∠A',就可用ASA证明全等;也可以寻求么意到题目中,通有CD、C'D'是三角形的高,CD=C'D'.观察图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证的Rt△ADC≌Rt△A'D'C',因此证明∠A=∠A'就可行.AC=A'C'(已知), ∴Rt△ADC≌Rt△A'D'C'(HL).AC=A'C'(已知),∴△ABC≌△A'B'C'(ASA).第六环节:课时小结本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力.同学们这一节课的表现,很值得继续发扬广大.第六环节:布置作业【板书设计】1.2直角三角形(二)线且BD—B'D'(如图).求证:Rt△ABC≌Rt△A'B'C'.CD=C'D'.【教学反思】ADA'D'B'C'【教学目标】1.知识与技能证明线段垂直平分线的性质定里和判定定理.2.过程与方法经历探索、猜测、证明的过程,进一步发展学生的推理证明能力.丰富对几何图形3.情感态度与价值观通过小组活动,学会与人合作,并能与他人交流思维的过程和结果。【教学重点】运用几何符号语言证明垂直平分线的性质定理及其逆命题。【教学难点】垂直平分线的性质定理在实际问题中的运用。【教学方法】讲授法【课时安排】第一课时【教学目标】1.知识与技能能够证明三角形三边垂直平分线交于一点。2.过程与方法经历猜想、探索,能够作出符合条件的三角形。3.情感态度与价值观学会与他人合作,并能与他人交流思维的过程和结果。【教学重点】探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法。【教学难点】明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。【教学过程】教学过程教学随笔第一环节:创设情境,引入新课如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?其中“到两个仓库的距离相等”,要强调这几个字在题中有很重要的作用.线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴.我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等.所以在这个个码头,使它到两个仓库的距离相等”利用此性质就能完成.进一步提问:“你能用公理或学过的定理证明这一结论吗?”第二环节:性质探索与证明教师鼓励学生思考,想办法来解决此问题。通过讨论和思考,引导学生分析并写出已知、求证的内容。求证:PA=PB.分析:要想证明PA=PB,可以考虑包含这两条线段的两个三角形是否全等.证明:∵MN⊥AB,MN 教师用多媒体完整演示证明过程.第三环节:逆向思维,探索判定你能写出上面这个定理的逆命题吗?它是真命题吗?这个命题不是“如将原命题写成“如果……那么……”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论。原命题的条件是“有一个点是线段垂直平分线上的点”.结论是“这个点到线段两个端点的距离相等”.此时,逆命题就很容易写出来.“如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.”则需用反例说明.引导学生分析证明过程,有如下四种证法:P证法一:已知:线段AB,点P是平面内一点且PA=PB.求证:P点在AB的垂直平分线上.ACB∴Rt△PAC≌Rt△PBC(HL定理).证法二:取AB的中点C,过PC作直线.PP∴△APC≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,ACB∴∠PCA=∠PCB=∠90°,即PC⊥AB证法三:过P点作∠APB的角平分线.△APC≌△BPC(SAS).又∵∠PCA+∠PCB=180°∴∠PCA=∠PCB=90°P证法四:过P作线段AB的垂直平分线PC.∵AC=CB,∠PCA=∠PCB=90°,ACB∴P在AB的垂直平分线上.从同学们的推理证明过程可知线段垂直平分线的性质定理的逆命题是我们把它称做线段垂直平分线的判定定理.第四环节:巩固应用在做完性质定理和判定定理的证明以后,引导学生进行总结1)线段的垂直平分线可以看成是到线段两个端点距离相等的所有点的集合。(2)到一条线段两个端点的距离相等个点在这条线段的垂直平分线上.因此只需做出这样的两个点即可做出线段的垂直平分线。证明:∵AB=AC,∴点A在线段BC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).同理,点O在线段BC的垂直平分线上.定一条直线).学生是第一次证明一条直线是已知线段的垂直平分线,因此老师要引导学生理清证明的思路和方法并给出完整的证明过程。第五环节:随堂练习第六环节:课堂小结第七环节:课后作业【板书设计】1.3线段的垂直平分线(一)P已知:线段AB,点P是平面内一点且PA=PB.P求证:P点在AB的垂直平分线上.A∴Rt△PAC≌Rt△PBC(HLA【教学反思】第二课时【教学目标】1.知识与技能能够证明三角形三边垂直平分线交于一点。2.过程与方法经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.体验解决问题的方法,发展实践能力和创新意识。3.情感态度与价值观体验数学活动中的探索与创造,感受数学的严谨性。【教学重点】能够证明与线段垂直平分线相关的结论。【教学难点】【教学过程】教学随笔教学过程教学随笔教师提问:“[利用尺规作三角形三条边的垂直平分线,当作完此题时你发现了什么?(教师可用多媒体演示作图过程)”下面请同学们剪一个三角形纸片,通过折叠找出每条边的垂直平分线, 观察这三条垂直平分线,你是否发现同样的结论?与同伴交流.看到的一定是真的吗?我们还需运用公理和已学过的定理进行推理证明,这样的发现才更有意这节课我们来学习探索和线段垂直平分线有关的结论.上述活动中,教师要注意多画几种特殊的三角形让学生亲自体验和观察结论的正确性。二、例题解析MAEPBNQF(1)教师引导学生分析,寻找证明方法。我们要从理论上证明这个结论,也就是证明“三线共点”,但这是我们没有遇到过的.不妨我们再来看一下演示过程,或许你能从中受到启示.只要证第三条直线过这个交点或者说这个点在第三条直线上即可.”虽然我们已找到证明“三线共点”的突O破口,询问学生如何知道这个交点在第三边的垂直平分线上呢?师生共析,完成证明BC(2)讨论结束后,学生书写证明过程。教师点评,注意几何符号语言的规范性。求证:P点在AC的垂直平分线上.证明:∵点P在线段AB的垂直平分线上,∴P点在AC的垂直平分线上(到线段两个端点距离相等的点.在这条线段的垂直平分线上).∴AB、BC、AC的垂直平分线相交于点P.进一步设问:“从证明三角形三边的垂直平分线交于一点,你还能得出什么结论?”(交点P到三角形三个顶点的距离相等(3)多媒体演示我们得出的结论:定理三角形三边的垂直平分线相交于一点,并且这一点到三个顶点能作几个?所作出的三角形都全等吗?(2)已知等腰三角形的底边,你能用尺规作出等腰三角形吗?如果能,能作几个?所作出的三角形都全等吗?(3)已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?学生通过小组讨论,并尝试作出草图,验证自己的结论。由学生思考可得:(1)已知三角形的一条边及这条边上的高,能作出三角形,并且能作出无数多个,如下图:已知:三角形的一条边a和这边上的高h求作:△ABC,使BC=a,BC边上的高为h AAA_hBaDC)BaCD从上图我们会发现,先作已知线段BC=a;然后再作BC边上的高h,但垂足不确定,我们可将垂足取在线段BC上或其所在直线上的任意一点D,过连接AB,AC(或△A1B,AlC),所得△ABC(或△A1BC)都满足条件,所以这样的三角形有无数多个.观察还可以发现这些三角形不都全等见几何画板课(2)如果已知等腰三角形的底边,用尺规作出等腰三角形,这样的等腰三角形也有无数多个.根据线段垂直平分线的性质定理可知,线段垂直平分线上的点到线段两个端点的距离相等,因为只要作已知等腰三角形底边的垂直平分线,取它上面的任意一点,和底边的两个端点相连接,都可以得到一个等腰三角形.另外有学生补充:“不是底边垂直平分线上的任意一点都满足条件,如底边的中点在底边上,不能构成三角形,应将这一点从底边的垂直平分线上挖去.”(3)如果底边和底边上的高都一定,这样的等腰三角形应该只有两个,并且它们是全等的,分别位于已知底边的两侧.已知底边及底边上的高,求作等腰三角形.M求作:△ABC,使AB=AC,BC=a,高AD=h作法:1.作BC=a;4.连接AB、ACBDC∴△ABC就是所求作的三角形(如图所示).N(6)做一做:课本第25页:教师引导学生分析作出草图,注意对学生作法叙述的准确性加以更正。(1)例题:已知直线l和l上一点P,用尺规作l的垂线,使它经学生先独立思考完成,然后交流:说出做法并解释作图的理由。使它经过点P呢?说说你的作法,并与同伴交流.六、课时小结本节课通过推理证明了“到三角形三个顶点距离的点是三角形三条边的垂直平分线的交点,及三角形三条边的垂直平分线交于一点”的结论,并能根据此结论“已知等腰三角形的底和底边的高,求作等腰三角形”七、课后作业【板书设计】 1.3线段的垂直平分线(二)定理三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等根据线段垂直平分线的性质定理可知,线段垂直平分线上的点到线段两个端点的距离相等,因为只要作已知等腰三角形底边的垂直平分线,取它上面的任意一点,和底边的两个端点相连接,都可以得到一个等腰三角形.【教学反思】【教学反思】【教学目标】1.知识与技能会证明角平分线的性质定理及其逆定理。2.过程与方法经历探索、猜测、证明的过程,进一步发展学生的推理证明能力.丰富对几何图形3.情感态度与价值观通过小组活动,学会与人合作,并能与他人交流思维的过程和结果。【教学重点】运用几何符号语言证明角平分线的性质定理及其逆命题。【教学难点】角平分线的性质定理在实际问题中的运用。【教学方法】讲授法【课时安排】第一课时【教学目标】1.知识与技能会证明角平分线的性质定理及其逆定理。2.过程与方法进一步发展学生的推理证明意识和能力,培养学生将文字语言.转化为符号语言、3.情感态度与价值观经历探索,猜想,证明使学生掌握研究解决问题的方法。【教学重点】正确地表述角平分线性质定理的逆命题及其证明。【教学难点】正确地表述角平分线性质定理的逆命题及其证明。【教学过程】 教学随笔教学过程教学随笔我们曾用折纸的方法探索过角平分线上的点的性质,步骤如下:从折纸过程中,我们可以得出CD=CE,即角平分线上的点到角两边的距离相等.你能证明它吗?二、探究新知(1)引导学生证明性质定理请同学们自己尝试着证明上述结论,然后在全班进行交流.AD求证:PD=PE.E证明:∵∠1=∠2,OP=OP,B∴△PDO≌△PEO(AAS).∴PD=PE(全等三角形的对应边相等).(教师在教学过程中对有困难的学生要给以指导)我们用公理和已学过的定理证明了我们折纸过程中得出的结论.我们把它叫做角平分线的性质定理。(用多媒体演示)角平分线上的点到这个角的两边的距离相等.(2)你能写出这个定理的逆命题吗?我们在前面学习线段的垂直平分线时,已经历过构造其逆命题的过程,我们可以类比着构造角平分线性质定理的逆命题.引导学生分析结论后完整地叙述出角平分线性质定理的逆命题:在一个角的内部且到角的两边距离相等的点,在这个角的角平分线上.它是真命题吗?你能证明它吗?没有加“在角的内部”时,是假命题.求证:点P在么AOB的角平分线上.在Rt△ODP和Rt△OEP中OP=OP,PD=PE,∴Rt△ODP≌Rt△OEP(HL定理).∴∠1=∠2(全等三角形对应角相等).逆命题利用公理和我们已证过的定理证明了,那么我们就可以把这个逆命题叫做原定理的逆定理.我们就把它叫做角平分线的判定定理。(3)用直尺和圆规画已知角的平方线及作图的依据讨论。三、巩固练习综合利用角平分线的性质和判定、直角三角形的相关性质解决问题。进一步发展学生的推论证明能力。在学生独立完成推理过程的基础上,教师要 给出书写示范例题:在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求DE的长.五、课堂小结这节课证明了角平分线的性质定理和判定定理,在有角的平分线(或证明是角的平分线)时,过角平分线上的点向两边作垂线段,利用角平分线的判定或性质则使问题迅速得到解决。六、布置作业【板书设计】1.4角平分线(一)已知:在么AOB内部有一点P,且PD上OA,PE⊥OB,D、E为垂足且PD=PE,求证:点P在么AOB的角平分线上.证明:PD⊥OA,PE⊥OB,在Rt△ODP和Rt△OEP中OP=OP,PD=PE,∴Rt△ODP≌Rt△OEP(HL定理).∴∠1=∠2(全等三角形对应角相等).【教学反思】第二课时【教学目标】1.知识与技能证明与角的平分线的性质定理和判定定理相关的结论。2.过程与方法经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.体验解决问题的方法,发展实践能力和创新意识。3.情感态度与价值观在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心。【教学重点】三角形三个内角的平分线的性质。【教学难点】角平分线的性质定理和判定定理的综合应用。【教学过程】【教学过程】教学过程教学随笔 第一环节:设置情境问题,搭建探究平台于是,首先证明“三角形的三个内角的角平分线交于一点”.教师要引导学生进行逻辑上的证明。第二环节:展示思维过程,构建探究平台CN相交于点P,BDNAMFPE证明:P点在∠BAC的角平分线上.∴PD=PE(角平分线上的点到这个角的两边的距离相等).∴点P在∠BAC的平分线上(在一个角的内部,且到角两边距离相等的点,在这个角的平分线上).∴△ABC的三条角平分线相交于点P.在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,还有什么“附带”的成果呢?(PD=PE=PF,即这个交点到三角形三边的距离相等.)于是我们得出了有关三角形的三条角平分线的结论,即定理三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.通过列表来比较三角形三边的垂直平分线和三条角平分线的性质定理如图:直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?你如何发ACllBl要求学生思考、交流。实况如下:[生]有一处.在三条公路的交点A、B、C组成的△ABC三条角平分线的现在要建的货物中转站要求它到三条公路的距离相等.这一点刚好符合.[生]我找到四处.(同学们很吃惊)除了刚才同学找到的三角形ABC内部的一点外,我认为在三角形外部还有三点.作∠ACB、∠ABC外角的平分线交于点P1(如下图所示),我们利用角平分线的性质定理和判定定理,可知点BCA的外角的角平分线的交点P3;因此满足条件共4个,分别是P、P1、P2、P3APBlCll第三环节:例题讲解DE⊥AB,垂足为E.A(2)求证:AB=AC+CD.A分析:本例需要运用前面所学的多个定理,EDBC而且将计算和证明融合在一起,目的是使学生进一步理解、掌握这些知识和方法,并能综合运用它们解决问题.第(1)问中,求AC的长,需求出BC的长,而BC=CD+DB,CD=4cIn,而BD在等腰直角三角形DBEEDBC(2)问中,求证AB=AC+CD.这是我们第一次遇到这种形式的证明,利用转化的思想AB=AE+BE,所以需证AC=AE,CD=BE.∴DE=CD=4cm(角平分线上的点到这个角两边的距离相等).∵∠AC=∠BC∴∠B=∠BAC(等边对等角).2∴∠BDE=90°—45°=45°.∴BE=DE(等角对等边).在等腰直角三角形BDE中∴AC=BC=CD+BD=(4+42)cm.Rt△ACD≌Rt△AED(HL定理)∴AC=AE.∴AB=AE+BE=AC+CD.[例2]已知:如图,P是么AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C、D.CACOPEOPBDB∴PC=PD(角平分线上的点到角两边的距离相等).∴OC=OD(全等三角形对应边相等).∴OP是CD的垂直平分线(等腰三角形“三线合一”定理).思考:图中还有哪些相等的线段和角呢?第四环节:课时小结本节课我们利用角平分线的性质和判定定理证明了三角形三条角平分 线交于一点,且这一点到三角形各边的距离相等.并综合运用我们前面学过线交于一点,且这一点到三角形各边的距离相等.并综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题.第五环节:课后作业【板书设计】1.4角平分线(二)三边垂直平分线交于三角形内一点交于三角形外一点交于斜边的中点到三角形三个顶点【教学反思】三条角平分线交于三角形内一点到三角形三边的距离相等锐角三角形钝角三角形直角三角形三角形交点性质【教学目标】1.知识与技能在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等。2.过程与方法进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力。3.情感态度与价值观通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯。【教学重点】通过例题的讲解和课堂练习对所学知识进行复习巩固是重点。【教学难点】本章知识的综合性应用。【教学方法】讲授法【课时安排】第一课时【教学目标】 1.知识与技能回顾与思考中建立本章的知识框架图。2.过程与方法进一步掌握综合法的证明方法,结合实例体会反证法的含义。3.情感态度与价值观经历探索,猜想,证明使学生掌握研究解决问题的方法。【教学重点】建立本章的知识框架图。【教学难点】本章知识的综合性应用。【教学过程】教学过程教学随笔第一环节:创设问题情境,搭建“回顾与思考”的平台教师通过学生回答并整理出六条公理如下:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等;(SAS)4.两角及其夹边对应相等的两个三角形全等;(ASA)5.三边对应相等的两个三角形全等;(SSS)6.全等三角形的对应边相等,对应角相等.问题2:向你的同伴讲述一两个命题的证明思路和证明方法.①综合法:从已知出发利用学过的公理和已证明的定理进行合情推理和②反证法.(教师可关注基础较差的学生,给于关注和指导)四等分.(2)射线OD、OE,使∠AOD=∠DOC=∠COE=∠EOBOM、ON,使OM=ON.NMBECDA12.分别以M、N为圆心,以大于MN的长为半径作弧,两弧2在∠AOB内交于点C.3.作射线OC(2)同上,分别在AOC和BOC内部作射线OD、OE.第二环节:建立本章的知识框架图本章所证明的命题大多与等腰三角形和直角三角形有关,主要包括哪些等腰三角形(含等边三角形)、直角三角形的性质定理及判定定理;线段垂直平分线的性质定理及判定定理;角平分线的性质定理及判定定理.1.通过探索、猜测、计算、证明得到的定理:(1)与等腰三角形、等边三角形有关的结论: 新北师大版八年级数学下册--全册教案性质:等腰三角形的两个底角相等,即等边对等角;等腰三角形两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等.等边三角形的三条边都相等,三个角都相等,并且每个角都等于等边三角形的三条角平分线、三条中线、三条高互相相等.判定:有两个角相等的三角形是等腰三角形;有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜斜边和一直角边对应相等的两个直角三角形全等.(HL)在一个三角形中,两个角不相等,它们所对的边也不相等(用反证法证2.命题的逆命题及其真假:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为另一个命题的逆命题.一个命题是真命题,它的逆命题不一定是真命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.其中一个定理称为另一个定理的逆定理.例如勾股定理及其逆定理.3.尺规作图线段垂直平分线的性质定理和判定定理;用尺规作线段的垂直平分线;已知底边和底边上的高,用尺规作等腰三角形角平分线的性质定理和判定定理;用尺规作已知角的平分线.BBDE⊥AC,DF⊥AB,垂足分别是E、F,且DE=DF.求证:△ABC是等腰三角形.分析:要证△ABC是等腰三角形,可证∠B=∠C.例2、如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,已知△BCE的周长为8,AC-BC=2.求AB与BC的长.分析:由已知AC-BC=2,即AB-BC=2,要求AB和BC的长,利用方程的思想,需找另一个AB与BC的关系.第四环节:课时小结第五环节:布置作业课内:A组题中的第3、4、5、6、7、8题;课外:A组题中的9题,B组题第1、2、3题.AAD【板书设计】回顾与思考(一) 通过探索、猜测、计算、证明得到的定理命题的逆命题及其真假与等腰三角形、等边三角形有关的结论与直角三角形有关的结论与一般三角形有关的结论尺规作图{EQ\*jc3\*hps31\o\al(\s\up15(线段的垂直),角的平分线)平分线【教学反思】第二课时【教学目标】1.知识与技能利用测试题巩固本章知识点。2.过程与方法进一步掌握本章知识,结合相关习题进一步发展学生的推理证明意识和能力。3.情感态度与价值观体验解决问题的方法,发展实践能力和创新意识。【教学重点】利用习题巩固本章知识。【教学难点】本章知识的综合性应用。【教学过程】教学过程教学随笔1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办①和②2.下列说法中,正确的是.A.两腰对应相等的两个等腰三角形全等B.两角及其夹边对应相等的两个三角形全等C.两锐角对应相等的两个直角三角形全等D.面积相等的两个三角形全等3.如图2,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8cm,BE=3 A.450B.550C.600D.7500A.9个B.8个C.7个D.6个6.如图5,l,l,l表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有.A.1处B.2处C.3处7.如图6,A、C、E三点在同一条直线上,△DAC和△EBC都是M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是().E在同一条直线上(如图7可以证明得DE的长就是AB的长,在这里判定D.HL9.如图8,将长方形ABCD沿对角线BD翻折,点C落在点E的位置,BE交AD于点F.求证:重叠部分(即ΔBDF)是等腰三角形.证明:∵四边形ABCD是长方形,∴AD∥BC请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪A.①③B.②③C.②①D.③④ 红的作法是1)作线段BC=a2)作线段BC的垂直平交于点D3)在直线MN上截取线段h4)连结AB,AC,则△ABC为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是.A.(1)B.(2)C.(3)D.(4)二、巩固练习1.如图10,已知,在△ABC和△DCB中,AC=DB,若不增加任何字母与辅助线,要使△ABC≌△DCB,则还需增加一个条件是.过点A的直线的垂线段BD,CE,若BD=3厘米,CE=4厘米,则DE的长为._______3.如图12,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则于点E,若ΔBCE的周长为50,则底边BC的长为.5.在ΔABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的锐角为500,则底角B的大小为.6.在《三角形的证明》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存7.如图14,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,点B与点A重合,折痕为DE,则CD的长为.做DE⊥AB于E,DF⊥AC于F,如果BC=20cm,那么DE+DF=cm.9.如图16,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走步,踏之何忍?”但小颖不知在“”处应填什么数字,请你帮助她填三、拓展练习0.求证:AB=4BD.【板书设计】回顾与思考(一)【教学反思】第二章一元一次不等式与一元一次不等式组感受生活中存在着的大量不等关系,通过用 如图,用两根长度均为如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆。(10分)做一做1)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高行李的长、宽、高满足的关系式 本课我主要学会了量关系外,更多的是不等关系的存在,并通过感受生活中等式是刻画量与量之间关系的重要数学模型。经历由具体在教学中,要充分相信学生的潜力,让学生真正成数学课堂上尽情地驰骋,老师要做好课堂的引第二章一元一次不等式与一元一次不等式组2.不等式的基本性质 难点:不等式转化为“x>a”或“x<a”的形 数,从中归纳出一般性结论。进一步发展学生注意:在讲解例题的过程中要求学生说出每一基本性质的理解。随堂练习学生独立完成,师生共以从一种形式变形为另一种形式,养成步步有据、讨论交流。学生自我总结本节课所学到的知识和重感受与实际收获,除了今天所学新的内容之外,还 本节课通过复习等式的基本性质,类比得出设置通过与等式的基本性质相对比,引导学生自己数值验算性质、最后自己总结归纳完善性质定理并例题与练习的过程中,每一步变形的依据都能够集的演示过程也十分规范。在整个教学过程中,学生第二章一元一次不等式与一元一次不等式组3.不等式的解集 ②经历求不等式的解集的过程,通过尝试把不等式的通过从实际问题中抽象出数学模型、探索求不4 新北师大版八年级数学下册--全册教案通过对以上问题情境的探究,引导学生认识到 (2)x≤43)不等式x≥-3的负整数解是()4)不等式x-1<2的正整数解是() 思想的渗透,设置问题情境让他们有兴趣参与探究、学通过老师的引导,理解不等式的解和解集的意义。在给予学生充分交流的同时,老师要积极参与,并活动中,老师应给予学生充分的启发引导,对合作交流第二章一元一次不等式与一元一次不等式组4.一元一次不等式(一) 骤,以及不等式的意义,不等式的基本性质和不等式的概念及解法提供条件。同时让学生体概念类比,学生不难得出一元一次不等式的概念。的最高次数是1的不等式,叫做一元一次不等式(linearinequalitywith 新北师大版八年级数学下册--全册教案总结:1.解一元一次不等式大致要分五个步骤进行1)去分母2)去括号; 新北师大版八年级数学下册--全册教案?(?(法做好准备。利用与等式(方程)对比进行教学识之间的内在联系,加强学生对知识的整体认识,发展学生的辩证思维.在一元一次不等式概念的教学中通过让学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃省武威市-嘉峪关市-临夏州中考历史试题(含答案)
- 工业园区的物流配送规划优化实践分享
- 工业废水处理技术与工艺研究
- 工业控制系统中智能传感器的应用
- 工业机器人结构设计与应用
- 工业自动化中新材料的作用
- 工业自动化中电池技术的运用
- 工业视频监控中的智能识别技术应用
- 工业节能与余热回收利用
- 工业生产与环保的和谐共生
- 第九届全国大学生化学实验邀请赛笔试试题
- 热管理技术详述
- 推荐《史蒂夫·乔布斯传》
- 应急演练评估表、评价表、评审表(模板)
- 系统集成项目总体服务方案
- CRH2动车组制动系统常见故障及处理方法
- 国开《色彩》形考任务第1-4章及答案
- 2004浙S1、S2、S3砌砖化粪池
- 热电厂管道防腐保温施工方案
- 骨髓穿刺术培训教案
- 《供应链管理》期末考试复习题库(含答案)
评论
0/150
提交评论