




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届浙南名校高三模拟测试卷(二)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为得到函数的图像,只需将函数的图像()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向左平移个长度单位2.设,,则()A. B. C. D.3.设a,b,c为正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不修要条件4.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.45.已知非零向量,满足,,则与的夹角为()A. B. C. D.6.已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,,则的渐近线方程为()A. B. C. D.7.若,则“”是“的展开式中项的系数为90”的()A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件8.已知与分别为函数与函数的图象上一点,则线段的最小值为()A. B. C. D.69.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]10.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3 B.4 C.5 D.611.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.12.已知函数,则()A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为________.14.的展开式中的系数为____.15.已知向量,,若满足,且方向相同,则__________.16.若满足约束条件,则的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,.(1)求函数的单调递增区间;(2)的三个内角、、所对边分别为、、,若且,求面积的取值范围.18.(12分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数,对于符合题意的任意,当时均有?若存在,求出所有的值;若不存在,请说明理由.19.(12分)如图,点是以为直径的圆上异于、的一点,直角梯形所在平面与圆所在平面垂直,且,.(1)证明:平面;(2)求点到平面的距离.20.(12分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.21.(12分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.22.(10分)如图,在四棱锥中,,,,底面为正方形,、分别为、的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D2.D【解析】
集合是一次不等式的解集,分别求出再求交集即可【详解】,,则故选【点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题.3.B【解析】
根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【详解】解:,,为正数,当,,时,满足,但不成立,即充分性不成立,若,则,即,即,即,成立,即必要性成立,则“”是“”的必要不充分条件,故选:.【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键.4.D【解析】可以是共4个,选D.5.B【解析】
由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【详解】根据平面向量数量积的垂直关系可得,,所以,即,由平面向量数量积定义可得,所以,而,即与的夹角为.故选:B【点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.6.D【解析】
根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.【详解】如图,因为为等腰三角形,,所以,,,又,,解得,所以双曲线的渐近线方程为,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.7.B【解析】
求得的二项展开式的通项为,令时,可得项的系数为90,即,求得,即可得出结果.【详解】若则二项展开式的通项为,令,即,则项的系数为,充分性成立;当的展开式中项的系数为90,则有,从而,必要性不成立.故选:B.【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.8.C【解析】
利用导数法和两直线平行性质,将线段的最小值转化成切点到直线距离.【详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线与直线平行,则,设抛物线的切点为,则由可得,,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算能力.9.B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.10.C【解析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】∵a>0,b>0,a+b=1,∴,当且仅当时取“=”号.
答案:C【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.11.D【解析】
利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.12.C【解析】
结合分段函数的解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
利用,解出,即可求出双曲线的渐近线方程.【详解】,且,,,该双曲线的渐近线方程为:.故答案为:.【点睛】本题考查了双曲线离心率与渐近线方程,考查了双曲线基本量的关系,考查了运算能力,属于基础题.14.28【解析】
将已知式转化为,则的展开式中的系数中的系数,根据二项式展开式可求得其值.【详解】,所以的展开式中的系数就是中的系数,而中的系数为,展开式中的系数为故答案为:28.【点睛】本题考查二项式展开式中的某特定项的系数,关键在于将原表达式化简将三项的幂的形式转化为可求的二项式的形式,属于基础题.15.【解析】
由向量平行坐标表示计算.注意验证两向量方向是否相同.【详解】∵,∴,解得或,时,满足题意,时,,方向相反,不合题意,舍去.∴.故答案为:1.【点睛】本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.16.4【解析】
作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可求得函数的单调递增区间;(2)由求得,利用余弦定理结合基本不等式求出的取值范围,再结合三角形的面积公式可求得面积的取值范围.【详解】(1),解不等式,解得.因此,函数的单调递增区间为;(2)由题意,则,,,,解得.由余弦定理得,又,,当且仅当时取等号,所以,的面积.【点睛】本题考查正弦型函数单调区间的求解,同时也考查了三角形面积取值范围的计算,涉及余弦定理和基本不等式的应用,考查计算能力,属于中等题.18.(1);(2).【解析】
(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,化简得,因此,,最后根据导数研究对应函数单调性,确定对应函数最值,即得取值集合.【详解】(1),当时,对恒成立,与题意不符,当,,∴时,即函数在单调递增,在单调递减,∵和时均有,∴,解得:,综上可知:的取值范围;(2)由(1)可知,则,由的任意性及知,,且,∴,故,又∵,令,则,且恒成立,令,而,∴时,时,∴,令,若,则时,,即函数在单调递减,∴,与不符;若,则时,,即函数在单调递减,∴,与式不符;若,解得,此时恒成立,,即函数在单调递增,又,∴时,;时,符合式,综上,存在唯一实数符合题意.【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.19.(1)见解析;(2)【解析】
(1)取的中点,证明,则平面平面,则可证平面.(2)利用,是平面的高,容易求.,再求,则点到平面的距离可求.【详解】解:(1)如图:取的中点,连接、.在中,是的中点,是的中点,平面平面,故平面在直角梯形中,,且,∴四边形是平行四边形,,同理平面又,故平面平面,又平面平面.(2)是圆的直径,点是圆上异于、的一点,又∵平面平面,平面平面平面,可得是三棱锥的高线.在直角梯形中,.设到平面的距离为,则,即由已知得,由余弦定理易知:,则解得,即点到平面的距离为故答案为:.【点睛】考查线面平行的判定和利用等体积法求距离的方法,是中档题.20.(1);(2)680元.【解析】
(1)根据题意,列方程,然后求解即可(2)根据题意,计算出10000元使用“余额宝”的利息为(元)和10000元使用“财富通”的利息为(元),得到所有可能的取值为560(元),700(元),840(元),然后根据所有可能的取值,计算出相应的概率,并列出的分布列表,然后求解数学期望即可【详解】(1)据题意,得,所以.(2)据,得这被抽取的7人中使用“余额宝”的有4人,使用“财富通”的有3人.10000元使用“余额宝”的利息为(元).10000元使用“财富通”的利息为(元).所有可能的取值为560(元),700(元),840(元).,,.的分布列为560700840所以(元).【点睛】本题考查频数分布表以及分布列和数学期望问题,属于基础题21.(1);(2).【解析】
(1)利用定义法求出函数在上单调递增,由和,求出,求出,运用单调性求出不等式的解集;(2)由于恒成立,由(1)得出在上单调递增,恒成立,设,利用三角恒等变换化简,结合恒成立的条件,构造新函数,利用单调性和最值,求出实数的取值范围.【详解】(1)设,,所以函数在上单调递增,又因为和,则,所以得解得,即,故的取值范围为;(2)由于恒成立,恒成立,设,则,令,则,所以在区间上单调递增,所以,根据条件,只要,所以.【点睛】本题考查利用定义法求函数的单调性和利用单调性求不等式的解集,考查不等式恒成立问题,还运用降幂公式、两角和与差的余弦公式、辅助角公式,考查转化思想和解题能力.22.(1)见解析;(2).【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酿造企业危机公关技巧考核试卷
- 节假日安全管理制度执行情况专项检查考核试卷
- 涂料在食品工业中的应用与安全考核试卷
- 钨钼矿地质勘探考核试卷
- 通讯设备租赁在跨行业合作中的商业模式创新考核试卷
- 金属包装容器内壁处理技术考核试卷
- 老年痴呆疾病护理常规
- 妇产科麻醉教学
- 表格设计方法与应用
- 职业学校急救课件
- 养老院应急疏散预案
- GB/T 44481-2024建筑消防设施检测技术规范
- 校长的岗位职责(34篇)
- 《0~3岁婴幼儿语言发展与教育》课件03不同阶段婴幼儿的语言发展特点
- 一站到底课件
- 《基础护理学》给药课件
- 代牧牛羊合同模板
- 绘本故事三只小猪盖房子课件
- 《WPS办公应用职业技能等级》课件-1. WPS初级-文字
- 感术行动专项考核试题及答案
- 抗日战争与中国的文化自觉
评论
0/150
提交评论