版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题型十二一线三等角模型【要点提炼】【认识一线三等角模型】一线三等角模型顾名思义,即在一条直线上有三个相等的角,就可称为一线三等角模型,按角的大小可分为:锐角型、直角型、钝角型【一线三等角模型的重要结论】如上图1①∆证明:∵∠1+∠4=180°∠1+∠2=180°∠∴∴∵∠∴②BD∵∆∴【特殊情况下的一线三等角模型】①全等型一线三等角注意:一线三等角模型只有在对应边相等的情况下才能全等,不能随意理解为只要两个边相等就能全等②中点型一线三等角模型当D为BC中点时,图形除了原本的结论还有新的结论可以得到,而该情况较常考到,因此可以作为模型记下来,证明过程如下由∆BDE~∆得ED∵D为BC中点∴BD=CD∴ED又∵∠EBD=∠EDF∴∆∴∠4=∠5即ED为∠BEF的平分线③不在同一侧的一线三等角模型下图中,直线AP上也有三个等角,但三个角不在直线AP的同一侧,此时是比较特殊的一线三等角模型,也可证明两三角形相似证明:∵∠1+∠2=∠DBA∠2+∠3=∠DPC∠DBA=∠DPC∴∠1+∠2=∠2+∠3∴∠1=∠3∵∠DBA=∠CAQ∴∠DBP=∠CAP∴∆QQ【构造一线三等角模型】①已知一线二等角--补一等角--构成一线三等角②已知一线特殊角--补二等角--构成一线三等角(如下图)【专题训练】一.选择题(共1小题)1.已知△ABC,AC=BC,∠C=120°,边长AC=10,点D在AC上,且AD=6,点E是AB上一动点,联结DE,将线段DE绕点D逆时针旋转30°得到线段DF,要使点F恰好落在BC上,则AE的长是()A.4+43 B.63 C.43 D.4+23二.填空题(共3小题)2.(2020•牡丹江)如图,在Rt△ABC中,CA=CB,M是AB的中点,点D在BM上,AE⊥CD,BF⊥CD,垂足分别为E,F,连接EM.则下列结论中:①BF=CE;②∠AEM=∠DEM;③AE﹣CE=2ME④DE2+DF2=2DM2;⑤若AE平分∠BAC,则EF:BF=2⑥CF•DM=BM•DE,正确的有.(只填序号)3.(2020•咸宁)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)4.(2019•台州)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且mn=23,则m+三.解答题(共6小题)5.(2020•宿迁)【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:AEEB【探究】如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且EFEG=AEEB,连接BG交求证:BH=GH.【拓展】如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且AEEB=DEEC,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:6.(2020•雅安)如图,已知边长为10的正方形ABCD,E是BC边上一动点(与B、C不重合),连接AE,G是BC延长线上的点,过点E作AE的垂线交∠DCG的角平分线于点F,若FG⊥BG.(1)求证:△ABE∽△EGF;(2)若EC=2,求△CEF的面积;(3)请直接写出EC为何值时,△CEF的面积最大.7.(2020•长沙)在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=23,AD=4,求EC的长;(3)若AE﹣DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.8.(2020•怀化)如图,在⊙O中,AB为直径,点C为圆上一点,延长AB到点D,使CD=CA,且∠D=30°.(1)求证:CD是⊙O的切线.(2)分别过A、B两点作直线CD的垂线,垂足分别为E、F两点,过C点作AB的垂线,垂足为点G.求证:CG2=AE•BF.9.(2020•达州)如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.831.331.501.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm…1.172.002.502.672.502.001.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,的长度为自变量,的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024销售代理合同标准范本
- 2025年度快递物流服务质量提升服务合同范本4篇
- 2024年高铁信息系统电脑设备采购合同
- 2025年度城市轨道交通建设贷款担保合同3篇
- 2025年高科技厂房建筑设计与施工总承包协议4篇
- 2024年05月2024银行校园招考微信群笔试历年参考题库附带答案详解
- 2025年度文化创意园区场地租赁及合作开发协议4篇
- 2024年04月安徽农商银行社会招考笔试笔试历年参考题库附带答案详解
- 2024版加工服务与协作协议版B版
- 2024版无偿车库租赁协议样本版B版
- 影视剧制作投资分红协议
- 2024-2025学年成都青羊区九上数学期末考试试卷【含答案】
- 2025年竞聘医院内科医生岗位演讲稿模版(3篇)
- 虚拟货币地址分析技术的研究-洞察分析
- 绿色供应链管理制度内容
- 心理学基础知识考试参考题库500题(含答案)
- 电力智慧检修安全运行三维可视化管理平台建设方案
- 一年级数学(上)计算题专项练习集锦
- 消防安全应急预案下载
- 《北航空气动力学》课件
- 附件:财政业务基础数据规范(3.0版)
评论
0/150
提交评论