下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5页/共5页呼和浩特市2023-2024学年第一学期高三年级学业质量监测文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号、座位号涂写在答题卡上.2.作答时,将答案写在答题卡上,写在本试卷上无效.一、选择题:本大题共12小题,在给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.2.已知复数z满足,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知直线、m、n与平面、,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则4.已知是偶函数,则值是()A. B. C. D.25.我国古代数学家赵爽创制了一幅“勾股圆方图”,后人称为“赵爽弦图”.他用数形结合的方法给出了勾股定理的证明,极富创新意识.“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如图,若大正方形的面积是25,小正方形的面积是1,则()A.9 B.12 C.15 D.166.函数的图象可能为()A. B.C. D.7.已知等比数列的首项为1,公比为3,则()A. B. C. D.8.用模型拟合一组数据组,其中,设,得变换后的线性回归方程为,则()A. B. C.35 D.219.已知一个正三棱柱的三视图如下图所示,则该三棱柱的体积为()A. B.12 C. D.1610.直线()截圆所得弦长的最小值是()A.2 B. C.4 D.611.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,,三棱锥的四个顶点都在球O的球面上,则球O的表面积为()A. B. C. D.12.定义在上的奇函数满足,且当时,,则函数在上所有零点的和为()A B. C. D.二、填空题:本大题共4小题.13.抛物线的焦点坐标为___________.14.当x、y满足条件时,的最小值为__________.15.已知等差数列是递增数列,且满足,,令,且,则数列的前项和为__________.16.已知双曲线:(,)的左右焦点分别为、,过的直线与双曲线交于、两点(在第一象限,在第四象限),若,则该双曲线的离心率为______.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个学生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题17.2023年秋末冬初,某市发生了一次流感疾病,某医疗团队为研究本地的流感疾病与当地居民生活习惯(良好、不够良好)的关系,在已患该疾病的病例中随机调查了100人(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
良好不够良好病例组2575对照组4555(1)分别估计病例组和对照组中生活习惯为良好的概率;(2)能否有99%的把握认为感染此次流感疾病与生活习惯有关?附:0.0500.0100.0013.841663510.82818.在中,内角A,B,C所对边分别a,b,c.已知,.(1)若,求角A;(2)若的面积,求边c.19.如图1,在直角梯形ABCD中,,,,E是AD的中点,O是AC与BE的交点.将沿BE折起到如图2中的位置,得到四棱锥.图1图2(1)证明:;(2)当平面平面时,求三棱锥的体积.20.已知椭圆:的焦距为2,点在椭圆C上,A、B分别为椭圆的左、右顶点.(1)求椭圆C的方程;(2)若点P是椭圆C上第二象限内的点,点Q在直线上,且,,求的面积.21.已知函数.(1)若,讨论函数单调性;(2)若,,求的取值范围.(二)选考题[选修4-4:坐标系与参数方程]22.在直角坐标系中,曲线的参数方程为(),曲线的参数方程为(为参数).(1)求曲线的普通方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度科技园区研发场地租赁合同范本下载3篇
- 《框架结构荷载分析》课件
- 2024简单工程劳务合同范本
- 税务业务知识培训课件
- 世纪生物医药研发与转让合同(04版)
- 个人住宅抵押贷款法律协议(2024版)版
- 2024版人力资源服务合同
- 2024年03月陕西中国银行信息科技运营中心(西安)春季校园招考笔试历年参考题库附带答案详解
- 二零二五年度餐饮行业员工福利保障合同3篇
- 2025年度新型装配式彩钢房拆除与改造施工合同范本4篇
- 人教版小学数学(2024)一年级下册第一单元 认识平面图形综合素养测评 B卷(含答案)
- 企业年会摄影服务合同
- 电商运营管理制度
- 二零二五年度一手房购房协议书(共有产权房购房协议)3篇
- 2025年上半年上半年重庆三峡融资担保集团股份限公司招聘6人易考易错模拟试题(共500题)试卷后附参考答案
- 城市公共交通运营协议
- 内燃副司机晋升司机理论知识考试题及答案
- 2024北京东城初二(上)期末语文试卷及答案
- 2024设计院与职工劳动合同书样本
- 2024年贵州公务员考试申论试题(B卷)
- 电工高级工练习题库(附参考答案)
评论
0/150
提交评论