




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10995
ImpactsofDisastersinConflictSettingsEvidencefromMozambiqueandNigeria
KarimaBenBih
ChloeDesjonqueres
BramkaJarafino
ElodieBlanc
SoleneMasson
WORLDBANKGROUP
Urban,DisasterRiskManagement,ResilienceandLandGlobalDepartmentDecember2024
PolicyResearchWorkingPaper10995
Abstract
Thispaperestimatesthedifferentiatedeconomicimpactofnaturalhazard-relateddisasters(thespecificdisastersandclimateshocksstudiedherebeingfloods)whentheyoccurinconflictversusnon-conflictaffectedareas.Existinglit-eratureshowsthatdisastersandclimateshockscancausesignificantdistresstocountriesandpeopleonaninstitu-tionalandhouseholdlevel.However,assumptionsaremadethattheirimpacttendstobelargerinconflict-affectedareas,withlittleevidenceavailableonthedifferentiatedextentofthesedamages.Thispaperinvestigateswhether,andtowhatextent,thepresenceofconflictshasamplifiedtheimpactsoffloodsoneconomicactivityandpeople,andhamperedrecovery.Thepaperappliesa“top-down”approachtoesti-matingthedifferentialimpactsofdisastersandclimate
shocksbetweenconflictandnon-conflictaffectedareasusingsatellite-derivedimageryofnightlightradianceasaproxyforeconomicactivity,alongwithgeospatialfoot-printsoffloods.Theanalysisconsiderstwocasestudies:the2019tropicalcyclonesIdaiandKennethandsubsequentfloodsinMozambique,andtheJuly2022floodsinNige-ria.Usingdifference-in-differenceestimations,theanalysisfindsthattherearesignificantdifferencesindisasterandclimateshockimpactsandrecoverybetweenconflictandnon-conflictaffectedareas.Particularly,thereisagreaterdeclineineconomicactivityandalongerrecoverytimeinconflictaffectedareas,asproxiedbythegreaterchangeintheintensityofnightlightradiance.
ThispaperisaproductoftheUrban,DisasterRiskManagement,ResilienceandLandGlobalDepartment.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/
prwp.Theauthorsmaybecontactedatkbenbih@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
ImpactsofDisastersinConflictSettings:EvidencefromMozambiqueandNigeria
Novembre20,2024
KarimaBenBih,WorldBank
ChloeDesjonqueres,WorldBankBramkaJarafino,WorldBank
ElodieBlanc,MotuEconomicandPublicPolicyResearchCenterSoleneMasson,WorldBank
Keywords:EconomicImpactsofDisastersinConflict,Climateshocks;EarthObservations;NPP-VIIRS;Floods;Nigeria;Mozambique;ConflictsinfluenceonDisasterImpactsandRecovery;GDP.
JELClassification:D74;O23;O47;O57;Q34;Q54.
TheauthorsaregratefultoStephaneHallegatte,OscarIshizawa,andJunRentschlerfortheirthoughtfulcomments,suggestions,andguidance.
2
Introduction
Theaimofthisstudyistoexaminethedifferentialimpactofdisastersandclimateshocksonpopulationsinconflict-affectedregions,specificallyinvestigatingtherepercussionsoffloodinginconflictversusnon-conflictareas.Usingremotesensingtechnology,weattempttoovercomethechallengeofdatascarcityinconflict-affectedcountries,allowingustoaccountforshort-termimpactsofrecentdisasterandclimateshockevents.Despitetheinherentlimitationsofusingnightlightintensityasaneconomicactivityindicator,itprovidesanempiricalfoundationfortheanalysisandenoughobservationsforanex-postquasi-experimentalimpactevaluation.Weemployadifference-in-differenceeconometricapproach,usingsatelliteimageryofnightlightradiancealongsidegeospatialdataonfloodandconflictevents.ThismethodologicalframeworkisappliedtoassesstheaftermathoftheMarch-April2019FloodsinMozambiquefollowingCyclonesKennethandIdai,aswellasthe2022floodsspanningJulytoOctoberinNigeria.
Resultsshowsignificantdisparitiesintheeffectsofdisastersandclimateshocksbetweenconflict-affectedandnon-conflict-affectedareas.Specifically,weobserveamorepronounceddeclineineconomicactivitiesinconflict-affectedregions.
Thepaperisstructuredasfollows.Thefirstsectionoutlinesthecontextoffloodandconflicts.Itpaysattentiontotheinterconnectednessofconflictanddisastersandclimateshocks,outliningthemethodologyandempiricalstrategyderivedtoestimatesuchex-postimpact.Inthesecondsection,wepresenttheresultsandsupportingdataderivedfromthestudy,includingthecasestudiesonMozambiqueandNigeria.Finally,wediscusslimitationsaswellasbroaderimplicationsbeforeconcluding.
Context:Floodimpactandconflictaffectedpopulation(Literature)
1.Impactofflood
Quantitativeeconomicanalyseshavefrequentlyusednightlightradianceasproxyforeconomicactivity(Chen&Nordhaus,2011;Hendersonetal.,2012).Thesehavealsobeenusedtoestimatetheimpactsofweathervariabilityanddisastersandclimateshocks(Bertinelli&Strobl,2013;Elliottetal.,2015;Felbermayretal.,2022;Heger&Neumayer,2019;MirandaMonteroetal.,2017)and,morespecifically,floods(Kocornik-Minaetal.,2020).Mostanalysesusingnightlightdatausuallydemonstrateanegativeimpactofdisasterandclimateshocksonnightlightsbutwitheffectsresorbingwithintheyearfollowingtheevent(Bertinelli&Strobl,2013;Elliottetal.,2015;Gillespieetal.,2014).Schippers&Botzen(2023)findthatforaseveredisastersuchasHurricaneKatrina,theeffectcanbelongerlasting.
However,thereisadebateabouttheaccuracyofnightlightsasaproxyforeconomicactivity.Criticsarguethatnightlightintensitymaynotcaptureeconomicactivityaccuratelyinallcontexts,suchashighlyruralareas,wherechangesinlightingefficiencycouldaffecttheamountoflightobservedwithoutnecessarilyreflectingchangesineconomicactivity.Possiblyotherculturalandsocialfactorsorgovernmentpoliciesonlightingcouldalsoinfluencetheamountofnightlightobserved.
3
Despitetheseconcerns,nightlightshaveseveraladvantagesasadatasource.Theyaregloballyavailable,providingcoverageeveninregionswhereeconomicdatamightbescarceorunreliable.Nightlightsalsohaveastandardspatialresolutionandtimeintervals,whichallowsforconsistentcomparisonsovertimeandacrossdifferentgeographicareas.Whenprocessedandinterpretedcorrectly,takingintoaccountthepotentiallimitationsandbiases,nightlightdatacanindeedserveasausefulproxyfortheintensityofeconomicactivity(Gibsonetal.,2021).
2.Relationshipbetweendisasterandconflict-affectedpopulation
Explicitstudiesoftherelationshipbetweendisasterandclimateriskandconflicthavegainedtractionoverthepastdecade(Siddiqi,2018),specificallyfocusingonco-locationandcausationdebatesassociatedwithclimate-relatedhazards,violentandarmedconflict,andinsecurity(Gemenneetal.,2014;Gleditsch,2012).Often,previousstudieshavefocusedontheimpactsofdisastersonconflicts–whethertheyexacerbateexistingconflicts,ignitenewones,orinsomecaseshaltongoingconflicts(Nel&Regharts,2008;Schleussneretal.,2016;Slettebak,2012;Ghimireetal.,2015;Nardullietal.,2015).Duetosuchuncertainimpactsofdisastersanddisasterrecoveryeffortonconflicts,otherstudiesexplorehowdisasterriskreductionandrecoverymeasuresshouldbedonedifferentlyinconflictcontexts(Brzoska,2018;Petersetal.,2019;WorldBank,2016).
Despitethegrowingbodyofliteraturerelatedtotheintricaciesofdisastersandconflicts,lessattentionhasbeengiventounderstandingandquantifyingtheinfluencesofconflictsondisasterimpacts–theadditionaleconomicimpactsofdisastersshouldtheytakeplaceinconflictareasanditseffectonconflict-affectedpopulation–aswellasthecausalpathwaysandmechanismsbehindsuchadditionalimpacts.Theabsenceofcomprehensiveeconomicdataandgroundtruthdatatovalidatedisasterimpacts,coupledwiththecomplexityofdefiningconflict-affectedpopulationsareamongthescientificchallengesprohibitinganalyzingtheinfluenceofconflictsondisasterimpacts.Thispaperseekstoaddressthisgapandsupportfurtherquantitativeanalysesontheadditionalimpactonhouseholds’welfareandnations’economicgrowthincountriesexperiencingthesecompoundedcrises.
EmpiricalstrategyData
Inthisstudy,weusepixel-levelgeospatialdata,includingnightlights,floodfootprints,populationdensity,andadministrativeboundaries,toeconometricallyanalyzethespecificeffectsoffloodeventsinMozambiqueaswellasNigeria'sconflictandnon-conflictaffectedregions.
Nightlightsdata
Furthermore,weutilizecompositeimagesofnighttimeradiancedatacapturedbytheVisibleInfraredImagingRadiometerSuite(VIIRS)sensoraboardtheNASA-NOAASuomisatellite.Thesemonthlycompositesareavailablesince2012ataresolutionof15arcsecondsby15arcseconds(approximately463metersattheequator).VIIRSDayNightBands(DNB)dataexcludegridcellsaffectedbylightning,straylight,lunarillumination,andcloudcover(Elvidgeetal.,2017).WefavorVIIRSdataovertraditionallyuseddatafromtheDefenseMeteorologicalSatelliteProgram(DMSP)
4
duetoseverallimitationsidentifiedinthelatter,includingblurring,lackofcalibration,top-coding,andpoorsuitabilityasaGDPproxyinruralareas(Gibsonetal.,2021).
ToaddresschallengesassociatedwithusingVIIRSnightlightsdataasaproxyforeconomicactivity(Skoufiasetal.,2021),weapplyfilterstoremovepixelswithextremevalues(i.e.,werestrictthesampletovaluescomprisedbetweenthe1stand99thpercentiles)andaccountforthenumberofobservationsavailableperpixel.
1
Wecalculatetheaveragenightlightradiancemonthlyspanningfrom1to6monthsbeforeandaftertheoccurrenceofthe2019floodsinMozambiqueandthe2022floodsinNigeria.Twovariablesarecomputed:"avg_rad,"representingthenightlightradianceatthefloodedpixellevel,and"avg_radBuff05"whichaveragesforeachfloodedpixelthenightlightradianceofthepixelitselfandadjacentpixelswithina0.5-kilometerbuffer.
2
Thelattervariableispreferredtoensuremaximumobservationavailabilityandtocapturetheimpactonindirectlyaffectedgridcells.
3
Wealsoextractedtheassociatedvariables"cf_cvg"and"avg_cvgBuff05",whichindicatethenumberofcloud-freeobservationsinthemonthusedtocalculateaveragenightlightradiance.
4
Flooddata
FloodeventsaredeterminedbasedonthemethodologyoutlinedbyDeVriesetal.(2020).WeuseS1GroundRangeDetectedscenesfromtheSyntheticApertureRadarsensorsonboardtheSentinel-1satellite,partoftheEuropeanSpaceAgency'sCopernicusprogram(ESA,2023).ThesescenesprovidedataonZ-scoresderivedfromSARbackscattertimeseriesofsinglebandco-polarizationverticaltransmitverticalreceive(VV)anddualcross-polarizationverticaltransmithorizontalreceive(VH).SinceOctober2014,thisdatahasbeenavailableevery6daysata10-meterresolution.
Floodsaredefinedastheunexpectedpresenceofwaterobservedinanygivenpixel.Todistinguishfloodsfrompermanentorseasonallyoccurringsurfacewater,weutilizethehistoricalLandsat-derivedmonthlywaterprobabilitiesdatasetproducedbytheEuropeanCommission’sJointResearchCentre(Pekeletal.,2016).FloodconfidenceiscategorizedashighifbothVVandVHZ-scoresfallbelowtheidentifiedthresholds,andasmediumifonlyoneofthesepolarizationsisbelowthethresholds.Weclassifyfloodsinareasnotdesignatedaspermanentopenwater(withaprobabilityofwatergreaterthan95%)orwithahistoricalinundationprobabilitylessthanorequalto25%.Foreachcasestudy,wepreselectahistoricalreferenceperiodbasedonexistingknowledgeofpastfloodingeventsintherespectivearea.
Conflictdata
ConflictareasareidentifiedutilizinggeocodeddatasourcedfromtheArmedConflictLocation&EventDataProject(ACLED)database(ACLED,2023),coveringtheperiodfromJanuary2012toDecember2023forNigeriaandfromJanuary2016toDecember2023inMozambique.Forthepurposeofthisstudy,conflict,asdefinedbytheWBG(2024)is,“astateofacuteinsecurityresultingfromtheuseoflethalforcebyagroup—encompassingstateforces,organizednon-stateentities,orotherirregularbodies—drivenbyapoliticalpurposeormotivation.Suchforcemaymanifest
1Pixelswithnocloud-freeobservationsareexcluded.
2Apixelisaround100m2,wetestedwithoutbuffer,500mand1kmandchosea500mbuffertointroducemorevariationofnightlightintensitywithinfloodedpixels.
3Atimeseriesdepictingbothvariablesisprovided
inFigure16
intheappendicesforNigeria.
4Thecorrespondingtimeseriesforispresented
inFigure17for
Nigeria.
5
bilaterally—involvingengagementsamongmultipleorganized,armedfactions,occasionallyleadingtocollateralcivilianharm—orunilaterally,whereinagrouptargetsciviliansdeliberately.”Furthermore,forthemostprecisedepictionofareasseverelyaffectedbyconflict,fatalitiesstemmingfromprotests,riots,andstrategicdevelopment(asperACLEDdata)havebeenexcluded,maintainingconsistencywiththeWBGClassificationofFragilityandConflictSituation’s(FCS)objectivesandthescopeofthisstudy.Ouranalysisfocusesonconflictrecordscategorizedas‘Battles’,‘Explosions/Remoteviolence’,and‘Violenceagainstcivilians’.Thesetypesofconflictsareselectedduetotheirviolentnature.
Settlementdata
Todeterminetheurbanizationlevel,weusetheGlobalHumanSettlementLayer(GHSL)whichcombinesgriddedpopulationdataestimatedbyCIESINGPWv4.11GHS-POPR2023andbuilt-upsurfaceinformationfromLandsatandSentinel-2dataGHS-BUILT-SR2023(Schiavinaetal.,2023).
5
Thesettlementdataareavailableatthe1kmresolution.Weconsiderthedatafortheyear2020,whichistheclosestavailabletothetimeperiodofinterestforbothcountries.IncaseofNigeria,wedefined‘urban’areasascellsdefinedashigh-densitycluster,
6
‘suburban’asmoderate-densitycluster,
7
‘rural’asruralandlow-densityclusters
8
and‘Uninhabited’asverylowdensityruralandwatercoveredareas
(Figure1)
.
9
5InGoogleEarthEngine,thisImagecollectionisaccessiblethrough
/earth
-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_SMOD.
6The‘urban’categoryincludestheclasses30:“UrbanCentregridcell”,23:“DenseUrbanClustergridcell”.
7The‘suburban’categoryincludestheclasses22:“Semi-denseUrbanClustergridcell”and21:“Suburbanorperi-urbangridcell”.
8The‘rural’categoryincludestheclasses13:“Ruralclustergridcell”and12:“LowDensityRuralgridcell”.
9The‘uninhabited’categoryincludestheclasses11:“Verylowdensityruralgridcell”and10:“Watergridcell”.
6
Figure1.SettlementcategoriesinNigeria
Populationdata
Tomaintainconsistencywithsettlementdata,populationdensityestimatesatthegridcelllevelaresourcedfromtheHigh-ResolutionSettlementLayer(HRSL)dataset(FacebookConnectivityLabandCenterforInternationalEarthScienceInformationNetwork-CIESIN-ColumbiaUniversity.,2016).
Thesedataareavailableataresolutionof1arc-second(approximately30meters)fortheyear2020.Additionally,alternativepopulationdataareextractedfromtheWorldPopdatabase(Linardetal.,2012;WorldP,2024),availableataresolutionof100metersfortheyear2020.
Table1
belowdescribesthevariablesusedintheanalysisoffloodandconflictimpactsoneconomicactivity,asmeasuredbynightlightchanges.The‘lat’(latitude)and‘lon’(longitude)variablesallowforlocationmappingandsituatingtheanalysisspatially.The'months_EE'variableaidsinunderstandingthetemporaleffectsoffloodsbyindicatingmonthsaftertheeventandnegativevaluesindicatingthemonthspreceding.
7
The'flood'variableiscrucialforassessingtheimpactoffloodswithvaryingdegreesofdatareliability.'PopDens'providesinsightsintohowpopulationdensitymightinfluenceorbeinfluencedbyspecificfloodevents.Thevariables'cf_cvgBuff05'and'avg_radBuff05'describedabove,measureeconomicactivitythroughcloudobservationsandnightlightradiance,respectively.Additionally,theyareaveragedoveradjacentpixelstoprovidecontextforeachlocation.
‘Treated'and'Treated_after'distinguishareasaffectedbyconflictbeforeandafterthefloodineachcountry:March-April2019aremonthswherethefloodoccurredinMozambiquewhileJuly2022wasconsideredasthefloodingmonthinthisanalysisforNigeria.Thisisessentialfordeterminingthecausalinferenceofconflictimpact.'Settlement'and'Urban_Suburban'categorizeurbanizationlevelstounderstandhowdifferenttypesofareasareaffectedbyandrespondtobothfloodsandconflictevents.Lastly,'Fatalities'providesadirectmeasureofthehumancostofconflicts.
Thesevariablescollectivelyenableacomprehensiveanalysisoftheeffectsoffloodsandconflictswhentheyco-occurinthesamelocation.Theyareusedtoanalyzetheimpactsoffloodsandconflictonspecificaspectsofeconomicactivity,aspotentiallyinferredbynightlightchanges.
Table1
describesthesevariables,theirunitsofmeasurements,andhowtheywillbeusedintheanalysis.
Table1.Descriptionofvariables
Variables
Description
Unit
lat
latitude
Decimalcoordinates
lon
longitude
Decimalcoordinates
months_EE
Monthsincetheevent
Months(positiveifafterevent,negativeifbeforeevent)
flood
Floodvariable
=1or2ifmediumreliability,=3ifhighreliability
PopDens
HRSLpopulationdensity
Person/km2
cf_cvgBuff05
Totalnumberofcloud-free
observationsthatwentintoeach
pixel(averagedovertheadjacent
pixels)
avg_radBuff05
Averagenightlightradiancevalues(averagedovertheadjacentpixels)
nanoWatts/sr/cm2
Treated
Dummyvariablerepresenting
conflict-affectedarea
=1ifsubjecttoaconflictwithinthebufferareabeforethefloods,=0otherwise
Treated_after
Dummyvariablerepresenting
conflict-affectedarea
=1ifsubjecttoaconflictwithinthebufferareaafterthefloods,=0otherwise
settlement
DegreeofUrbanization
=11ifuninhabited,=12ifrural,=21ifsuburbanand=23ifurban
Urban_Suburban
Urbanizationdummyvariable
=1ifurbanorsuburban,=0otherwise
Fatalities
Totalnumberoffatalitiesassociatedwithconflictswithinthebufferarea
Overallempiricalstrategy
Todifferentiatetheimpactoffloodsoneconomicactivitypriortothefloodbetweenconflict-affected(treatmentgroup),andnon-conflictaffected(controlgroup)areas,wefirstrestrictthesampletoflood-impactedpixels.Wethenapplythedifference-in-differencesregressionmethod,aquasi-experimentaltechniquecommonlyusedforex-postimpactevaluations.Theunderlyingconcept
8
involvescomparingtwogroupsovertime.Duetotheirdistinctcharacteristics,weexpectdifferencesinoutcomesbetweenthegroups.However,theevolutionofthesedifferingoutcomesovertime,whileholdinggroupcharacteristicsconstant,shouldfollowasimilartrend(i.e.,thecommontrendassumption)untilanexogenousshockoccurs.Thepresenceofthisparalleltrendiscrucialforestablishingcausalevidenceofimpact.Thedifference-in-differencesresearchdesignisparticularlysuitablefor‘event’studiesandthequantificationoftheimpactofunexpectedshocksoneconomicoutcomes.Thismethodhasbeenextensivelyemployedinthereviewedliterature(Card&Krueger,2000;Galianietal.,2005).Inourcasestudies,weareusingthecanonicaldifferenceindifference,whichmeanstwogroupsandtwotimeperiods(beforeandafter).
Thedifference-in-differenceregressionisspecifiedasfollows:
yi,t=Treatediβ1+postperiodtβ2+Treatmenti,tβ3+covariatesi,tβ4+εit(1)
whereyi,tistheaveragelogofnightlightsdataforeachfloodedpixeliattimet.Theuseofremotesensingdataallowsustoexploreimmediatetoshorttermimpactofthefloodoverourtwogroups.Treatediisadummyvariableequalto1forfloodedpixelilocatedwithintheconflictbufferzonebeforethefloodevent,andto0forfloodedpixelilocatedinanon-conflictaffectedareabeforethefloodevent.postperiodtisadummyvariablethatrepresentstheperiodaftertheexogeneousshock.
10
Treatmentitisthetreatmentvariable,i.e.,thevariableofinterestinadifference-in-differencespecificationwhichaccountsfortheinteractionofthetreatedandPostperiodvariable;covariatesitisthesetofadditionalexplanatoryvariablesuspectedtoimpactthelevelofnightlightsradiance;andεitisanindependentandidenticallydistributederrorterm,clusteredattheadministrativelevel2,toavoidspatialautocorrelation.
Oneofthechallengesinouranalysisisthedefinitionofconflict-affectedareas.ConflicteventsinMozambiqueareclusteredgeographicallyassuchthatitisreadilyascertainablewhatregionsaremostimpactedbytheseevents,andthusdefinedasconflict-affectedareasforthepurposeofthisstudy.
Duetothecomplexityandwidegeographicalspanofviolentandnon-violentconflicteventsinNigeria,conflict-affectedareasinNigeriaarenotdefinedbasedonnumberofeventsalonebutarebasedontheWBGFCSconflictclassification.Thisclassificationusespubliclyavailabledatatoannuallyassesscountries,pinpointingthosemostaffectedbyfragilityandconflict.ThismethoddifferentiatesbetweenterritoriesexperiencingFragilityand/orConflictsituations.Alignedwiththisdefinition,thestudyemploysthefollowingconflictindicatorsidentifiedbytheFCSindextodelineateconflict-affectedareasinNigeriaattheLocalGovernmentArea(LGA)scale:
10Thisvariabletakesavalueof1ift=August2020toestimatetheeffect1monthafterthedisaster,t=November2020fortheeffect3monthsafterthedisaster,etc.and0otherwise.
9
(1)ForongoingconflictaccordingtoACLED,(a)anabsolutenumberofconflictdeathsabove250,and(b)above2deathsper100,000population.
(2)ForrapidlydecliningsecuritysituationsaccordingtoACLED,(a)anabsolutenumberofconflictdeathsabove250,(b)between1and2deathsper100,000population,and(c)thenumberofcasualtieshasmorethandoubledinthepastyear.
Differenceindifferencemethodologyreliesondifferentassumptionswherethecommontrendisthemostimportantone.Tovalidatethisassumptionofcommontrendsbeforetheflood,indicatingthatthedependentvariableforbothgroupswouldhavecontinuedmovingsimilarlyintheabsenceoftheextremeevent,weconductatestbycomparingchangesinthedependentvariableforthetreatmentandcontrolgroupsovermultipleperiodsprecedingthefloods(i.e.estimatethedifference-in-differencebetweent-2andt-1,thet-3andt-2,etc.).Thisanalysishelpsascertainwhethertheeconomictrajectoriesofthetwogroupswereindeedparallelbeforetheoccurrenceofthefloodevents.Theregressionisspecifiedas:
yi,t=Treatediβ1+postperiodtβ2+Treatmenti,tβ3+covariatesi,tβ4+εit(2)
Variablesarethesameasspecification(1)buttheperiodofinterestisnotthesame.Weprovidestatisticaltestsaswellasthecommontrendvisuallyrepresentedforeachofourcasestudy.
Casestudyselection
Thestudy’sfocusondisasterimpactsinconflictvsnonconflictaffectedareaslimitsthepoolofcountrycasestudies.Thereareseveralaspectsthatdeterminethechoiceofthecasestudycountries.First,theselectedcountriesneedtohavegeographicallylocalizedconflicts,allowingforacontrolledcomparisonwhereconflictistheprimarydifferingfactorofdisasterimpacts.Second,thereisarequirementthattheselectedcountrieswereaffectedbyarapidonsetdisasterinrecentyears,toincreasethepossibilityofavailabledatainassessingthedisaster’simpacts.Ifmultiplecountriesareselected,therapid-onsetdisastereventshadtohappenwithinthesametimeframe.Thiscriterionensuresthatthecasestudiesprovideafocusedexaminationoftheimpactofdisastersoneconomicactivitiesinconflictsettingvsnonconflictsettings,withouttheconfoundingeffectsofdifferentcountryconditionsortimelinesofdisasterevents.Third,thedisasterfootprintsshouldcoverasubstantialgeographicalextentoftheselectedcountries’areaasopposedtolocalizeddisasters.Thiscriterionistoensurethattherearebothconflict-andnon-conflict-affectedareashitbythedisaster.Giventhecriteriaabove,weselectedthe2019TropicalCyclonesIdaiandKennethinMozambiqueandtheJuly2022floodsinNigeriaascasestudies.Furthermore,thetwocountrieshavecomparablecontextsintermsofconflictcharacteristicswhicharecrucialforisolatingthevariableofconflictincomparativeanalysis.
Mozambiquecasestudy:2019TropicalCyclonesIdaiandKenneth
ThefirstcasestudyfocusesonthefloodsinMozambiqueafterTCIdaiandKenneth.In2019,MozambiquewashitbytwoTropicalCyclones(TC),Idai(March4-15)andKenneth(April25-28),bothofwhichhavebeenqualifiedasamongthestrongestTCsonrecordintheSouthernHemisphere(Charruaetal.,2021).Thenortheasternregionofthecountryischaracterizedbyawidespreadlong-
10
termhumanitariansituationduetotheongoingconflict,datingbackto2017.Asdepictedin
Figure
2,
TCIdaifirstmadelandfallonMarch4,2019,untilMarch9,beforechangingd
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 活动房转让合同协议书
- 房地产包销合同协议书
- 退出转让协议书
- 矿难赔偿协议书
- 工地临时房安全协议书
- 租赁违约协议书
- 资产补充协议书
- 屠宰场转让合同协议书
- 无动力设施订购协议书
- 商户和顾客和解协议书
- 难点02:总集篇·十六种阴影部分面积法专项练习-2024年小升初数学典型例题系列(解析版)2
- 全球经济2025年全球经济与贸易师考试试题及答案
- GB/T 12605-2008无损检测金属管道熔化焊环向对接接头射线照相检测方法
- 烙铁温度点检表
- 仓库温湿度记录表
- 初中 初二 物理 流体压强与流速的关系 教学设计
- 霍兰德职业兴趣测试题(卷)完整版
- 飞控板安装运行调试pix固定翼
- 教科版科学五年级下册《热》单元教材解读分析
- 5Why分析法经典培训(43页)
- 2018二建继续教育(市政公用工程)试题库(有答案解析)
评论
0/150
提交评论