FRM二级培训项目:市场风险测量与管理(阅读版)_第1页
FRM二级培训项目:市场风险测量与管理(阅读版)_第2页
FRM二级培训项目:市场风险测量与管理(阅读版)_第3页
FRM二级培训项目:市场风险测量与管理(阅读版)_第4页
FRM二级培训项目:市场风险测量与管理(阅读版)_第5页
已阅读5页,还剩195页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

「市场风险测量V

\与管理Z

FRMPartIIProgram■基础班

讲师:CrystalGao

e[史由+叶间晞的|hProfQuiomGsvn

TopicWeightingsinFRMPartII

SessionNO.Content%

Session1MarketRiskMeasurementandManagement20

Session2CreditRiskMeasurementandManagement20

Session3OperationalRiskandResiliency20

LiquidityandTreasuryRiskMeasurementand

Session415

Management

Session5RiskManagementandInvestmentManagement15

Session6CurrentIssuesinFinancialMarket10

2-201

行业•创新•憎值

ModelingDependence:CorrelationsAnd

Copulas

⑥Framework•SomeCorrelationBasics

i•EmpiricalPropertiesofCorrelation

、MarketRiskMeasurement

\/•FinancialCorrelationModeling

andManagement/EmpiricalApproachestoRiskMetricsand

Hedges

TermStructureModelsofInterestRates

•TheScienceofTermStructureModels

rVaRandotherRiskMeasures•TheEvolutionofShortRatesandthe

•ParametricApproachesShapeoftheTermStructure

•Non-parametricApproaches•TheArtofTermStructureModels:

•Semi-parametricApproachesDrift

•Extremevalue•TheArtofTermStructureModels:

,BacktestingVaRVolatilityandDistribution

•VaRNappingVolatilitySmiles

,RiskMeasurementfortheTradingBook

3-201

VaRandotherRiskMeasures

4-201

行业•创新•憎值

Parametric

.

Approaches

VaRandotherRiskMeasures

5-201

♦l.ProfitandLoss

>Profit/Loss

P/L=Pt+Dt-P1

>ArithmeticReturnData:

Pt+Dt—Pt-iPt+Dt

r=-----------------=----------1

tPP

t-it-i

jGeometricReturnData:

P+D

Rt=皿与t-t-)=ln(l+r)

vt

t-i

6-201

行业•创新•憎值

♦l.ProfitandLoss

>Thedifferencebetweenthetworeturnsisnegligiblewhenbothreturnsare

small,butthedifferencegrowsasthereturnsgetbigger-whichistobe

expected,asthegeometricisalogfunctionofthearithmeticreturn.

>Sincewewouldexpectreturnstobelowovershortperiodsandhigher

overlongerperiods,thedifferencebetweenthetwotypesofreturnis

negligibleovershortperiodsbutpotentiallysubstantialoverlongerones.

7-201

行业•创新•憎值

♦2.NormalVaR

>Approach1:NormalVaR

•Weassumethatarithmeticreturnsarenormallydistributedwithmean叩

andstandarddeviationo

VaR=-(n-zaa)VaR=-(|i-ZaO)P.i

-10

Profit(-t-Vloss(-)

8-201

行业•创新•憎值

♦2.NormalVaR

圜>Example:

•Assumethattheprofit/lossdistributionforXYZisnormally

distributedwithanannualmeanof$16millionandastandard

deviationof$11million.CalculatetheVaRatthe95%and99%

confidencelevelsusingaparametricapproach.

VaR(5%)=-$16million+Sllmillionx1.65

=$2.15million

VaR(l%)=-$16million+Sllmillionx2.33

=$9.63million

9-201

行业•创新•憎值

♦3.LognormalVaR

>LognormalVaR

•Assumethatgeometricreturnsarenormallydistributedwithmeanp

andstandarddeviationo.Thisassumptionimpliesthatthenatural

logarithmofPtisnormallydistributed,orthatPtitselfislognormally

distributed.NormallydistributedgeometricreturnsimplythattheVaRis

lognormallydistributed.07

VaR=1-

3

=64

3

zQW

O

VaR=(l-e^«)PJ

d3

t-iO6.

2

-08-06-04-02002040808

Loss(4>Vbrofit(-)

10-201

行业•创新•憎值

♦3.LognormalVaR

圜,Example:

•Adiversifiedportfolioexhibitsanormallydistributedgeometric

returnwithmeanandstandarddeviationof11%and21%,

respectively.Calculatethe5%and1%lognormalVaRassumingthe

beginningperiodportfoliovalueis$100.

LognormalVaR(5%)-100x(1-e011-0-21x1-65)-$21.06

LognormalVaR(l%)=100x(1-e011-0-21x2-33)=$31.57

11-201

行业•创新•憎值

4.Quantile-QuantilePlots

>Weareinterestedinasking:

•Ifdatalooksrightwhenweuseparametricapproach?

•Whatwedois

JPlotourdataonahistogramandestimatetherelevantsummary

statistics.

/Considerwhatkindofdistributionmightfitourdata.

>Aplotofthequantilesoftheempiricaldistributionagainstthoseofsome

specifieddistribution.TheshapeoftheQQplottellsusalotabouthowthe

>Inparticular,iftheQQplotislinear,thenthespecifieddistributionfitsthe

data,andwehaveidentifiedthedistributiontowhichourdatabelong.

12-201

行业•创新•憎值

4.Quantile-QuantilePlots

4

3

2

8

=

c

1

cn

b

e-

-2O

d-

E-

-1

-2

13-201

行业•创新•憎值

♦4.Quantile-QuantilePlots

-10

Normalquantiles

14-201

行业•创新•憎值

Non-parametric

Approaches

VaRandotherRiskMeasures

15-201

♦l.HistoricalSimulation

>Allnon-parametricapproachesarebasedontheunderlyingassumptionthat

•Withnon-parametricmethods,therearenoproblemsdealingwith

va种甲nce-covarianciematrices,cursesofdimensionality;etc.~

Loss(+)/profit(-)

16-201

行业•创新•憎值

♦l.HistoricalSimulation

>BootstrappedHistoricalSimulation

■Thebootstrapisveryintuitiveaodeasytoapply.

•Wecreatealargenumberofnewsamples,eachobservationofwhichis

obtainedbydrawingatrandomfromouroriginalsampleandreplacing

theobservationafterithasbeendrawn.

•Eachnew'resampled'samplegivesusanewVaRestimate,andwecan

takeour'best'estimatetobethemeanoftheseresample-based

estimates.Thesameapproachcanalsobeusedtoproduceresample-

basedESestimates-eachoneofwhichwouldbetheaverageofthe

lossesineachresampleexceedingtheresampleVaR—andour'best'ES

estimatewouldbethemeanoftheseestimates.

>Abootstrappedestimatewilloftenbemoreaccuratethana'raw'sample

estimate,andbootstrapsarealsousefulforgaugingtheprecisionofour

estimates.

17-201

行业•创新•憎值

♦l.HistoricalSimulation

>DrawbacksofHS

•BasicHShasthepracticaldrawbackthatitonlyallowsustoestimate

VaRsatdiscreteconfidenceintervalsdeterminedbythesizeofourdata

set.

•Forinstance,theVaRatthe95.1%confidencelevelisaproblembecause

thereisnocorrespondinglossobservationtogowithit.

•Withnobservations,basicHSonlyallowsustoestimatetheVaRs

associatedwith,at-best,ndifferentconfidencelevels.

18-201

行业•创新•憎值

♦l.HistoricalSimulation

>Non-parametricDensityEstimation

•Non-paQmetricdensityestimationoffersapotentialsolution.

•Drawinstraightlinesconnectingthemid-pointsatthetopofeach

histogrambar(Polygon).

•Treatingtheareaunderthelinesasapdfthenenablesustoestimate

VaRsatanyconfidencelevel.

(a)Originalhistogram(b)SurrogAfedensin*function

19-201

行业•创新•憎值

♦2.ExpectedShortfall

>TheConditionalVaR(expectedshortfall)

•TheexpectedvalueofthelosswhenitexceedsVaR.

•Measurestheaverageofthelossconditionalonthefactthatitisgreater

thanVaR.

•CVaRindicatesthepotentiallossiftheportfoliois"hit"beyondVaR.

BecauseCVaRisanaverageofthetailloss,onecanshowthatitqualifies

asasubadditiveriskmeasure.

04

3

O.H

^

全o

z

wO.2

a

d

20-201

行业•创新•憎值

♦2.ExpectedShortfall

圜,Example:

•Giventhefollowing30orderedpercentagereturnsofanasset:

-16,-14,-10z-7Z-7Z-5Z-4-—L-L0,0,0,L22Z4Z

6,7,8,9,11,12,12,14,18,21f23.

CalculatetheVaRandexpectedshortfallata90%confidencelevel:

•Solution:

VaR(90%)=7,ExpectedShortfall=13.3

21-201

行业•创新•憎值

♦3.VaRvsES

>VaRcurveandEScurve:plotsofVaRorESagainsttheconfidencelevel.

22-201

行业•创新•憎值

♦3.VaRvsES

>Thelongerthewindow,thesparsertheVaRcurve.

>TheVaRcurveisfairlyunsteady,asitdirectlyreflectstherandomnessof

individuallossobservations,buttheEScurveissmoother,becauseeach

ESisanaverageoftaillosses.

jAstheholdingperiodrises,thenumberofobservationsrapidlyfalls,

andwesoonfindthatwedon'thaveenoughdata.

>Evenifwehadaverylongrunofdata,theolderobservationsmight

haveverylittlerelevanceforcurrentmarketconditions.

23-201

行业•创新•憎值

♦4.A/DofNon-parametricMethods

>Advantages

•Intuitiveandconceptuallysimple;

•Donotdependonparametricassumptions;

•Accommodateanytypeofposition;

•Noneedforcovariancematrices,nocursesofdimensionality;

•Usedatathatare(often)readilyavailable;

•Arecapableofconsiderablerefinementandpotentialimprovementif

wecombinethemwithparametric“add-ons“tomakethemsemi­

parametric.

24-201

行业•创新•憎值

♦4.A/DofNon-parametricMethods

>Disadvantages

•Verydependentonthehistoricaldataset;

•Subjecttoghosteffect;

•Ifourdataperiodwasunusuallyquiet,non-parametricmethodswill

oftenproduceVaRorESestimatesthataretoolowfortheriskwe

actuallyfacing,viceversa;

•Havedifficulty(actslowly)handlingsh+fe(permanentriskchange)that

takeplaceduringoursampleperiod;

25-201

行业•创新•憎值

♦4.A/DofNon-parametricMethods

•Havedifficultyhandlingextremevalue

/Ifourdatasetincorporatesextremelossesthatareunlikelytorecur,

theselossescandominatenon-parametricriskestimateseven

thoughwedon'texpectthemtorecur;

JMakenoallowanceforplausibleeventsthatmightoccur,butdid

notactuallyoccur,inoursampleperiod.

26-201

行业•创新•憎值

♦4.A/DofNon-parametricMethods

>ProblemsfromLongWindow

•Thelongerthewindow:

/Thegreatertheproblemswithageddata;

«Thelongertheperiodoverwhichresultswillbedistortedby

unlikely-to-recurpastevents,andthelongerwewillhavetowaitfo『

/Themorethenewsincurrentmarketobservationsislikelytobe

drownedoutbyolderobservations;

/Thegreaterthepotentialfordata-<olleetioA-problems.

27-201

行业•创新•憎值

♦5.CoherentRiskMeasures

>Acoherentriskmeasureisaweightedaverageofthequantilesofour

lossdistribution.

1

0=I0(P)P

0

•①(p)=weighingfunctionspecifiedbytheuser.

>ExponentialWeightingFunction

-(i-)/

J:thedegreeofourrisk-aversion

28-201

行业•创新•憎值

♦5.CoherentRiskMeasures

jEstimatingexponentialspectralriskmeasuresasaweightedaverageof

VaRs(=0.05)

ConfidencelevelWeight

aVaR<P(a)xaVaR

(a)ct)(a)

10%-1.281600.0000

20%-0.841600.0000

30%-0.524400.0000

40%-0.25330.00010.0000

50%00.00090.0000

60%0.25330.00670.0017

70%0.52440.04960.0260

80%0.84160.36630.3083

90%1.28162.70673.4689

Riskmeasure=mean(0(a)timesaVaR)0.4226

29-201

行业•创新•憎值

♦5.CoherentRiskMeasures

>Theestimatedoeseventuallyconvergetothetruevalueasngetslarge.

Estimatesofexponentialspectralcoherentrisk

measureasafunctionofthenumberoftailslices

Estimateofexponential

Numberoftailslices

spectralriskmeasure

100.4227

501.3739

1001.5853

5001.7896

10001.8197

50001.8461

10,0001.8498

50,0001.8529

100,0001.8533

500,0001.8536

30-201

行业•创新•憎值

Semi-parametric

Approaches

VaRandotherRiskMeasures

31-201

♦l.Age-weightedHistoricalSimulation

>OnereturnobservationwillaffecteachoftheFieKW^-ebsewatieRS-inourP/L

series.Butafternperiodshavepassed,theobservationwillfalloutofthe

datasetusedtocalculatethecurrentHSP/Lseries,andwillthereafterhave

noeffectonP/L.

>Thisweightingstructurehasanumberofproblems.

•Oneproblemisthatit

samplepeHodthesameweight.

•Theequal-weightapproachcanalsomakeriskestimatesunresponsive

tomajorevents.

•Theequal-weightstructurealsopresumesthateachobservationinthe

sampleperiodisequallylikelyandindependentoftheothersovertime.

However,this'iid'assumptionisunrealistic.

32-201

行业•创新•憎值

♦l.Age-weightedHistoricalSimulation

•Itisalsohardtojustifywhyanobservationshouldhaveaweightthat

suddenlygoestozerowhenitreachesagen.

•Ghosteffects

/wecanhaveaVaRthatisundulyhigh(orlow)becauseofasmall

clusterofhighlossobservations,orevenjustasinglehighloss,and

themeasuredVaRwillcontinuetobehigh(orlow)untilndaysorso

havepassedandtheobservationhasfallenoutofthesampleperiod.

33-201

行业•创新•憎值

♦l.Age-weightedHistoricalSimulation

>Boudoukh,RichardsonandWhitelaw(BRW:1998)

•w⑴istheprobabilityweightgiventoanobservation1dayold.

•A入closeto1indicatesaslowrateofdecay,anda入farawayfrom1

indicatesahighrateofdecay.

A3(x)1A2(JO1入313]

|J4M3M21

入1(1—入|

3⑴+入3⑴+,・,+入吁1(x)(])=1T3。)=一二J

34-201

行业•创新•憎值

♦l.Age-weightedHistoricalSimulation

>Majorattractions

•ItprovidesanicegeneralizationoftraditionalHS,becausewecan

regardtraditional屋asewithzerodecay,or入11.

•AlargelosseventwillreceiveahigherweightthanundertraditionalHSZ

andtheresultingnext-dayVaRwouldbehigherthanitwouldotherwise

havebeen.

•Helpstoreducedistortionscausedbyeventsthatareunlikelytorecur,

andhelpstoreduce

/Asanobservationages,itsprobabilityweightgraduallyfallsandits

influencediminishesgraduallyovertime.Whenitfinallyfallsoutof

thesampleperiod,itsweightwillfallfrom入MQ)tozero,insteadof

from1/ntozero.

35-201

行业•创新•憎值

♦l.Age-weightedHistoricalSimulation

>Majorattractions

■Age-weightingallowsus

observation,soweneverthrowpotentiallyvaluableinformationaway.

Thiswouldimproveefficiencyandeliminateghosteffects,becausethere

wouldnolongerbeany“jumps"inoursampleresultingfromold

observationsbeingthrownaway.

36-201

行业•创新•憎值

♦2.Volatility-weightedHistoricalSimulation

>HullandWhite(HW1998)

•WeadjustthehistoHcalretumstoreflecthowvolatilitytomorrowis

believedtohavechangedfromitspastvalues.

/rti=actualreturnforassetiondayt

Jat>i=volatilityforecastforassetiondayt

/aTi=currentforecastofvolatilityforasseti

37-201

行业•创新•憎值

♦2.Volatility-weightedHistoricalSimulation

>Majorattractions

•Ittakesaccountofvolatilitychangesinanaturalanddirectway.

•Itproducesriskestimatesthatareappropriatelyseroitive4G-WTOfrt

volatilityestimates.

•ItallowsustoobtainVaRandESestimatesthatcanexceedthe

maximumlossinourhistoricaldataset.

/Inrecentperiodsofhighvolatility,historicalreturnsarescaled

upwards,andtheHSP/LseriesusedintheHWprocedurewillhave

valuesthatexceedactualhistoricallosses.

•ProducessuperiorVaRestimatestotheBRWone.

38-201

行业•创新•憎值

♦3.Correlation-weightedhistoricalsimulation

>Correlation-weightedhistoricalsimulation

•Correlation-weightingisalittlemoreinvolvedthanvolatility-weighting.

•Toseetheprinciplesinvolved,supposeforthesakeofargumentthatwe

havealreadymadeanyvolatility-basedadjustmentstoourHSreturns

alongHull-Whitelines,butalsowishtoadjustthosereturnstoreflect

changesincorrelations.

39-201

行业•创新•憎值

♦4•Filteredhistoricalsimulation

,Filteredhistoricalsimulation(FHS)

•CombineshistoricalsimulationmodelwithGARCHorAGARCHmodel.

>Thestepsareasfollows:

•Firstly,usethehistoricalreturntofindanysurpriseandthusreproduce

volatilitywithGARCHorAGARCHmodel.

•Secondly,thesevolatilityforecastsarethendividedintotherealized

returnstoproduceasetofstandardizedreturns,whichisLED..

•Thethirdstageinvolvesbootstrappingfromthesetofstandardized

returns.

•Finally,eachofthesesimulatedreturnsgivesusapossibleend-of-

tomorrowportfoliovalue,andacorrespondingpossibleloss,andwe

taketheVaRtobethelosscorrespondingtoourchosenconfidence

level.

40-201

行业•创新•憎值

♦4•Filteredhistoricalsimulation

>Majorattractions

•Combinethenon-parametricattractionsofHSwithasophisticated(eg,

GARCH)treatmentofvolatility,andsotakeaccountofchangingmarket

•Itisfest,evenforlargeportfolios

estimatesthatcanexceedthemaximumhistoricallossinousdataset.

•Itmaintainsthecoirelationstructureinourreturn

•Itcanbemodifiedtotakeaccountofautocorrelationsinassetreturns

•ItcanbemodifiedtoproduceestimatesofVaRorESconfidence

intervals.

•ThereisevidencethatFHSworkswell.

41-201

行业•创新•憎值

Extremevalue

VaRandotherRiskMeasures

42-201

♦l.Introduction

“Thefitteddistributionwilltendtoaccommodatethemorecentral

observations,ratherthantheextremeobservations,whicharemuch

sparser.

>Theestimationoftherisksassociatedwithlowfrequencyeventswithlimited

dataisinevitablyproblematic.

>Extreme-valuetheory(EVT):

•Centraltendencystatisticsaregovernedbycentrallimittheorems,but

centrallimittheoremsdonotapplytoextremes.Instead,extremesare

governedbyextreme-valuetheorems.

43-201

行业•创新•憎值

♦2.GeneralizedExtremeValueDistribution

>SupposewehavearandomlossvariableXzandweassumetobeginwith

thatXisindependentandidenticallydistributed(iid)fromsomeunknown

distribution.ConsiderasampleofsizendrawnfromF(x)zandletthe

maximumofthissamplebeMnIfnislarge,wecanregardMnasanextreme

value.

>Underrelativelygeneralconditions,thecelebratedFisher-Tippetttheorem

thentellsusthatasngetslarge,thedistributionofextremes(i.e.zMn

convergestothefollowinggeneralizedextreme-value(GEV)distribution:

44-201

行业•创新•憎值

♦2.GeneralizedExtremeValueDistribution

>Thisdistributionhasthreeparameters.

x-U—x

exp[-(1+m丁)刃,"0

F(x)=Ix°_

exp[-exp(-----=0

r“thelocationparameterofthelimitingdistribution,whichisameasureofthe

centraltendencyofMn.

r,thescaleparameterofthelimitingdistribution,whichisameasureofthe

dispersionofMn.

r,thetailindex,givesanindicationoftheshape(orheaviness)ofthetailofthe

limitingdistribution.

•When5>0:Frechetdistribution,heavytails,I次et-dist,Paretodist.

•When5=0:Gumbeldistribution,lighttails,likenormalorlognormaldist.

■When5<0:Weibulldistribution,verylighttails,notusefulformodelling

financialreturns.

45-201

行业•创新•憎值

♦2.GeneralizedExtremeValueDistribution

S

U

E

>

q一

R

q

o

d

46-201

行业•创新•憎值

♦2.GeneralizedExtremeValueDistribution

>HowdowechoosebetweentheGumbelandtheFrechet?

•WechoosetheEVdistributiontowhichtheextremesfromtheparent

distributionwilltend.

•Wecouldtestthesignificanceofthetailindex,andwemightchoose

theGumbelifthetailindexwasinsignificantandtheFrechetotherwise.

•Giventhedangersofmodelrisk,theestimatedriskmeasureincreases

withthetailindex,asaferoptionisalwaystochoosetheFrechet.

47-201

行业•创新•憎值

♦2.GeneralizedExtremeValueDistribution

>EstimationofEVP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论