版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
「市场风险测量V
\与管理Z
FRMPartIIProgram■基础班
讲师:CrystalGao
e[史由+叶间晞的|hProfQuiomGsvn
TopicWeightingsinFRMPartII
SessionNO.Content%
Session1MarketRiskMeasurementandManagement20
Session2CreditRiskMeasurementandManagement20
Session3OperationalRiskandResiliency20
LiquidityandTreasuryRiskMeasurementand
Session415
Management
Session5RiskManagementandInvestmentManagement15
Session6CurrentIssuesinFinancialMarket10
2-201
行业•创新•憎值
ModelingDependence:CorrelationsAnd
Copulas
⑥Framework•SomeCorrelationBasics
i•EmpiricalPropertiesofCorrelation
、MarketRiskMeasurement
\/•FinancialCorrelationModeling
andManagement/EmpiricalApproachestoRiskMetricsand
Hedges
TermStructureModelsofInterestRates
•TheScienceofTermStructureModels
rVaRandotherRiskMeasures•TheEvolutionofShortRatesandthe
•ParametricApproachesShapeoftheTermStructure
•Non-parametricApproaches•TheArtofTermStructureModels:
•Semi-parametricApproachesDrift
•Extremevalue•TheArtofTermStructureModels:
,BacktestingVaRVolatilityandDistribution
•VaRNappingVolatilitySmiles
,RiskMeasurementfortheTradingBook
3-201
VaRandotherRiskMeasures
4-201
行业•创新•憎值
Parametric
.
Approaches
VaRandotherRiskMeasures
5-201
♦l.ProfitandLoss
>Profit/Loss
P/L=Pt+Dt-P1
>ArithmeticReturnData:
Pt+Dt—Pt-iPt+Dt
r=-----------------=----------1
tPP
t-it-i
jGeometricReturnData:
P+D
Rt=皿与t-t-)=ln(l+r)
vt
t-i
6-201
行业•创新•憎值
♦l.ProfitandLoss
>Thedifferencebetweenthetworeturnsisnegligiblewhenbothreturnsare
small,butthedifferencegrowsasthereturnsgetbigger-whichistobe
expected,asthegeometricisalogfunctionofthearithmeticreturn.
>Sincewewouldexpectreturnstobelowovershortperiodsandhigher
overlongerperiods,thedifferencebetweenthetwotypesofreturnis
negligibleovershortperiodsbutpotentiallysubstantialoverlongerones.
7-201
行业•创新•憎值
♦2.NormalVaR
>Approach1:NormalVaR
•Weassumethatarithmeticreturnsarenormallydistributedwithmean叩
andstandarddeviationo
VaR=-(n-zaa)VaR=-(|i-ZaO)P.i
-10
Profit(-t-Vloss(-)
8-201
行业•创新•憎值
♦2.NormalVaR
圜>Example:
•Assumethattheprofit/lossdistributionforXYZisnormally
distributedwithanannualmeanof$16millionandastandard
deviationof$11million.CalculatetheVaRatthe95%and99%
confidencelevelsusingaparametricapproach.
VaR(5%)=-$16million+Sllmillionx1.65
=$2.15million
VaR(l%)=-$16million+Sllmillionx2.33
=$9.63million
9-201
行业•创新•憎值
♦3.LognormalVaR
>LognormalVaR
•Assumethatgeometricreturnsarenormallydistributedwithmeanp
andstandarddeviationo.Thisassumptionimpliesthatthenatural
logarithmofPtisnormallydistributed,orthatPtitselfislognormally
distributed.NormallydistributedgeometricreturnsimplythattheVaRis
lognormallydistributed.07
VaR=1-
3
=64
3
zQW
O
VaR=(l-e^«)PJ
d3
t-iO6.
2
-08-06-04-02002040808
Loss(4>Vbrofit(-)
10-201
行业•创新•憎值
♦3.LognormalVaR
圜,Example:
•Adiversifiedportfolioexhibitsanormallydistributedgeometric
returnwithmeanandstandarddeviationof11%and21%,
respectively.Calculatethe5%and1%lognormalVaRassumingthe
beginningperiodportfoliovalueis$100.
LognormalVaR(5%)-100x(1-e011-0-21x1-65)-$21.06
LognormalVaR(l%)=100x(1-e011-0-21x2-33)=$31.57
11-201
行业•创新•憎值
4.Quantile-QuantilePlots
>Weareinterestedinasking:
•Ifdatalooksrightwhenweuseparametricapproach?
•Whatwedois
JPlotourdataonahistogramandestimatetherelevantsummary
statistics.
/Considerwhatkindofdistributionmightfitourdata.
>Aplotofthequantilesoftheempiricaldistributionagainstthoseofsome
specifieddistribution.TheshapeoftheQQplottellsusalotabouthowthe
>Inparticular,iftheQQplotislinear,thenthespecifieddistributionfitsthe
data,andwehaveidentifiedthedistributiontowhichourdatabelong.
12-201
行业•创新•憎值
4.Quantile-QuantilePlots
4
3
2
8
=
c
1
cn
b
e-
-2O
d-
E-
山
-1
-2
13-201
行业•创新•憎值
♦4.Quantile-QuantilePlots
-10
Normalquantiles
14-201
行业•创新•憎值
Non-parametric
Approaches
VaRandotherRiskMeasures
15-201
♦l.HistoricalSimulation
>Allnon-parametricapproachesarebasedontheunderlyingassumptionthat
•Withnon-parametricmethods,therearenoproblemsdealingwith
va种甲nce-covarianciematrices,cursesofdimensionality;etc.~
Loss(+)/profit(-)
16-201
行业•创新•憎值
♦l.HistoricalSimulation
>BootstrappedHistoricalSimulation
■Thebootstrapisveryintuitiveaodeasytoapply.
•Wecreatealargenumberofnewsamples,eachobservationofwhichis
obtainedbydrawingatrandomfromouroriginalsampleandreplacing
theobservationafterithasbeendrawn.
•Eachnew'resampled'samplegivesusanewVaRestimate,andwecan
takeour'best'estimatetobethemeanoftheseresample-based
estimates.Thesameapproachcanalsobeusedtoproduceresample-
basedESestimates-eachoneofwhichwouldbetheaverageofthe
lossesineachresampleexceedingtheresampleVaR—andour'best'ES
estimatewouldbethemeanoftheseestimates.
>Abootstrappedestimatewilloftenbemoreaccuratethana'raw'sample
estimate,andbootstrapsarealsousefulforgaugingtheprecisionofour
estimates.
17-201
行业•创新•憎值
♦l.HistoricalSimulation
>DrawbacksofHS
•BasicHShasthepracticaldrawbackthatitonlyallowsustoestimate
VaRsatdiscreteconfidenceintervalsdeterminedbythesizeofourdata
set.
•Forinstance,theVaRatthe95.1%confidencelevelisaproblembecause
thereisnocorrespondinglossobservationtogowithit.
•Withnobservations,basicHSonlyallowsustoestimatetheVaRs
associatedwith,at-best,ndifferentconfidencelevels.
18-201
行业•创新•憎值
♦l.HistoricalSimulation
>Non-parametricDensityEstimation
•Non-paQmetricdensityestimationoffersapotentialsolution.
•Drawinstraightlinesconnectingthemid-pointsatthetopofeach
histogrambar(Polygon).
•Treatingtheareaunderthelinesasapdfthenenablesustoestimate
VaRsatanyconfidencelevel.
(a)Originalhistogram(b)SurrogAfedensin*function
19-201
行业•创新•憎值
♦2.ExpectedShortfall
>TheConditionalVaR(expectedshortfall)
•TheexpectedvalueofthelosswhenitexceedsVaR.
•Measurestheaverageofthelossconditionalonthefactthatitisgreater
thanVaR.
•CVaRindicatesthepotentiallossiftheportfoliois"hit"beyondVaR.
BecauseCVaRisanaverageofthetailloss,onecanshowthatitqualifies
asasubadditiveriskmeasure.
04
3
O.H
^
全o
z
wO.2
a
d
20-201
行业•创新•憎值
♦2.ExpectedShortfall
圜,Example:
•Giventhefollowing30orderedpercentagereturnsofanasset:
-16,-14,-10z-7Z-7Z-5Z-4-—L-L0,0,0,L22Z4Z
6,7,8,9,11,12,12,14,18,21f23.
CalculatetheVaRandexpectedshortfallata90%confidencelevel:
•Solution:
VaR(90%)=7,ExpectedShortfall=13.3
21-201
行业•创新•憎值
♦3.VaRvsES
>VaRcurveandEScurve:plotsofVaRorESagainsttheconfidencelevel.
22-201
行业•创新•憎值
♦3.VaRvsES
>Thelongerthewindow,thesparsertheVaRcurve.
>TheVaRcurveisfairlyunsteady,asitdirectlyreflectstherandomnessof
individuallossobservations,buttheEScurveissmoother,becauseeach
ESisanaverageoftaillosses.
jAstheholdingperiodrises,thenumberofobservationsrapidlyfalls,
andwesoonfindthatwedon'thaveenoughdata.
>Evenifwehadaverylongrunofdata,theolderobservationsmight
haveverylittlerelevanceforcurrentmarketconditions.
23-201
行业•创新•憎值
♦4.A/DofNon-parametricMethods
>Advantages
•Intuitiveandconceptuallysimple;
•Donotdependonparametricassumptions;
•Accommodateanytypeofposition;
•Noneedforcovariancematrices,nocursesofdimensionality;
•Usedatathatare(often)readilyavailable;
•Arecapableofconsiderablerefinementandpotentialimprovementif
wecombinethemwithparametric“add-ons“tomakethemsemi
parametric.
24-201
行业•创新•憎值
♦4.A/DofNon-parametricMethods
>Disadvantages
•Verydependentonthehistoricaldataset;
•Subjecttoghosteffect;
•Ifourdataperiodwasunusuallyquiet,non-parametricmethodswill
oftenproduceVaRorESestimatesthataretoolowfortheriskwe
actuallyfacing,viceversa;
•Havedifficulty(actslowly)handlingsh+fe(permanentriskchange)that
takeplaceduringoursampleperiod;
25-201
行业•创新•憎值
♦4.A/DofNon-parametricMethods
•Havedifficultyhandlingextremevalue
/Ifourdatasetincorporatesextremelossesthatareunlikelytorecur,
theselossescandominatenon-parametricriskestimateseven
thoughwedon'texpectthemtorecur;
JMakenoallowanceforplausibleeventsthatmightoccur,butdid
notactuallyoccur,inoursampleperiod.
26-201
行业•创新•憎值
♦4.A/DofNon-parametricMethods
>ProblemsfromLongWindow
•Thelongerthewindow:
/Thegreatertheproblemswithageddata;
«Thelongertheperiodoverwhichresultswillbedistortedby
unlikely-to-recurpastevents,andthelongerwewillhavetowaitfo『
/Themorethenewsincurrentmarketobservationsislikelytobe
drownedoutbyolderobservations;
/Thegreaterthepotentialfordata-<olleetioA-problems.
27-201
行业•创新•憎值
♦5.CoherentRiskMeasures
>Acoherentriskmeasureisaweightedaverageofthequantilesofour
lossdistribution.
1
0=I0(P)P
0
•①(p)=weighingfunctionspecifiedbytheuser.
>ExponentialWeightingFunction
-(i-)/
J:thedegreeofourrisk-aversion
28-201
行业•创新•憎值
♦5.CoherentRiskMeasures
jEstimatingexponentialspectralriskmeasuresasaweightedaverageof
VaRs(=0.05)
ConfidencelevelWeight
aVaR<P(a)xaVaR
(a)ct)(a)
10%-1.281600.0000
20%-0.841600.0000
30%-0.524400.0000
40%-0.25330.00010.0000
50%00.00090.0000
60%0.25330.00670.0017
70%0.52440.04960.0260
80%0.84160.36630.3083
90%1.28162.70673.4689
Riskmeasure=mean(0(a)timesaVaR)0.4226
29-201
行业•创新•憎值
♦5.CoherentRiskMeasures
>Theestimatedoeseventuallyconvergetothetruevalueasngetslarge.
Estimatesofexponentialspectralcoherentrisk
measureasafunctionofthenumberoftailslices
Estimateofexponential
Numberoftailslices
spectralriskmeasure
100.4227
501.3739
1001.5853
5001.7896
10001.8197
50001.8461
10,0001.8498
50,0001.8529
100,0001.8533
500,0001.8536
30-201
行业•创新•憎值
Semi-parametric
Approaches
VaRandotherRiskMeasures
31-201
♦l.Age-weightedHistoricalSimulation
>OnereturnobservationwillaffecteachoftheFieKW^-ebsewatieRS-inourP/L
series.Butafternperiodshavepassed,theobservationwillfalloutofthe
datasetusedtocalculatethecurrentHSP/Lseries,andwillthereafterhave
noeffectonP/L.
>Thisweightingstructurehasanumberofproblems.
•Oneproblemisthatit
samplepeHodthesameweight.
•Theequal-weightapproachcanalsomakeriskestimatesunresponsive
tomajorevents.
•Theequal-weightstructurealsopresumesthateachobservationinthe
sampleperiodisequallylikelyandindependentoftheothersovertime.
However,this'iid'assumptionisunrealistic.
32-201
行业•创新•憎值
♦l.Age-weightedHistoricalSimulation
•Itisalsohardtojustifywhyanobservationshouldhaveaweightthat
suddenlygoestozerowhenitreachesagen.
•Ghosteffects
/wecanhaveaVaRthatisundulyhigh(orlow)becauseofasmall
clusterofhighlossobservations,orevenjustasinglehighloss,and
themeasuredVaRwillcontinuetobehigh(orlow)untilndaysorso
havepassedandtheobservationhasfallenoutofthesampleperiod.
33-201
行业•创新•憎值
♦l.Age-weightedHistoricalSimulation
>Boudoukh,RichardsonandWhitelaw(BRW:1998)
•w⑴istheprobabilityweightgiventoanobservation1dayold.
•A入closeto1indicatesaslowrateofdecay,anda入farawayfrom1
indicatesahighrateofdecay.
A3(x)1A2(JO1入313]
|J4M3M21
入1(1—入|
3⑴+入3⑴+,・,+入吁1(x)(])=1T3。)=一二J
34-201
行业•创新•憎值
♦l.Age-weightedHistoricalSimulation
>Majorattractions
•ItprovidesanicegeneralizationoftraditionalHS,becausewecan
regardtraditional屋asewithzerodecay,or入11.
•AlargelosseventwillreceiveahigherweightthanundertraditionalHSZ
andtheresultingnext-dayVaRwouldbehigherthanitwouldotherwise
havebeen.
•Helpstoreducedistortionscausedbyeventsthatareunlikelytorecur,
andhelpstoreduce
/Asanobservationages,itsprobabilityweightgraduallyfallsandits
influencediminishesgraduallyovertime.Whenitfinallyfallsoutof
thesampleperiod,itsweightwillfallfrom入MQ)tozero,insteadof
from1/ntozero.
35-201
行业•创新•憎值
♦l.Age-weightedHistoricalSimulation
>Majorattractions
■Age-weightingallowsus
observation,soweneverthrowpotentiallyvaluableinformationaway.
Thiswouldimproveefficiencyandeliminateghosteffects,becausethere
wouldnolongerbeany“jumps"inoursampleresultingfromold
observationsbeingthrownaway.
36-201
行业•创新•憎值
♦2.Volatility-weightedHistoricalSimulation
>HullandWhite(HW1998)
•WeadjustthehistoHcalretumstoreflecthowvolatilitytomorrowis
believedtohavechangedfromitspastvalues.
/rti=actualreturnforassetiondayt
Jat>i=volatilityforecastforassetiondayt
/aTi=currentforecastofvolatilityforasseti
37-201
行业•创新•憎值
♦2.Volatility-weightedHistoricalSimulation
>Majorattractions
•Ittakesaccountofvolatilitychangesinanaturalanddirectway.
•Itproducesriskestimatesthatareappropriatelyseroitive4G-WTOfrt
volatilityestimates.
•ItallowsustoobtainVaRandESestimatesthatcanexceedthe
maximumlossinourhistoricaldataset.
/Inrecentperiodsofhighvolatility,historicalreturnsarescaled
upwards,andtheHSP/LseriesusedintheHWprocedurewillhave
valuesthatexceedactualhistoricallosses.
•ProducessuperiorVaRestimatestotheBRWone.
38-201
行业•创新•憎值
♦3.Correlation-weightedhistoricalsimulation
>Correlation-weightedhistoricalsimulation
•Correlation-weightingisalittlemoreinvolvedthanvolatility-weighting.
•Toseetheprinciplesinvolved,supposeforthesakeofargumentthatwe
havealreadymadeanyvolatility-basedadjustmentstoourHSreturns
alongHull-Whitelines,butalsowishtoadjustthosereturnstoreflect
changesincorrelations.
39-201
行业•创新•憎值
♦4•Filteredhistoricalsimulation
,Filteredhistoricalsimulation(FHS)
•CombineshistoricalsimulationmodelwithGARCHorAGARCHmodel.
>Thestepsareasfollows:
•Firstly,usethehistoricalreturntofindanysurpriseandthusreproduce
volatilitywithGARCHorAGARCHmodel.
•Secondly,thesevolatilityforecastsarethendividedintotherealized
returnstoproduceasetofstandardizedreturns,whichisLED..
•Thethirdstageinvolvesbootstrappingfromthesetofstandardized
returns.
•Finally,eachofthesesimulatedreturnsgivesusapossibleend-of-
tomorrowportfoliovalue,andacorrespondingpossibleloss,andwe
taketheVaRtobethelosscorrespondingtoourchosenconfidence
level.
40-201
行业•创新•憎值
♦4•Filteredhistoricalsimulation
>Majorattractions
•Combinethenon-parametricattractionsofHSwithasophisticated(eg,
GARCH)treatmentofvolatility,andsotakeaccountofchangingmarket
•Itisfest,evenforlargeportfolios
estimatesthatcanexceedthemaximumhistoricallossinousdataset.
•Itmaintainsthecoirelationstructureinourreturn
•Itcanbemodifiedtotakeaccountofautocorrelationsinassetreturns
•ItcanbemodifiedtoproduceestimatesofVaRorESconfidence
intervals.
•ThereisevidencethatFHSworkswell.
41-201
行业•创新•憎值
Extremevalue
VaRandotherRiskMeasures
42-201
♦l.Introduction
“Thefitteddistributionwilltendtoaccommodatethemorecentral
observations,ratherthantheextremeobservations,whicharemuch
sparser.
>Theestimationoftherisksassociatedwithlowfrequencyeventswithlimited
dataisinevitablyproblematic.
>Extreme-valuetheory(EVT):
•Centraltendencystatisticsaregovernedbycentrallimittheorems,but
centrallimittheoremsdonotapplytoextremes.Instead,extremesare
governedbyextreme-valuetheorems.
43-201
行业•创新•憎值
♦2.GeneralizedExtremeValueDistribution
>SupposewehavearandomlossvariableXzandweassumetobeginwith
thatXisindependentandidenticallydistributed(iid)fromsomeunknown
distribution.ConsiderasampleofsizendrawnfromF(x)zandletthe
maximumofthissamplebeMnIfnislarge,wecanregardMnasanextreme
value.
>Underrelativelygeneralconditions,thecelebratedFisher-Tippetttheorem
thentellsusthatasngetslarge,thedistributionofextremes(i.e.zMn
convergestothefollowinggeneralizedextreme-value(GEV)distribution:
44-201
行业•创新•憎值
♦2.GeneralizedExtremeValueDistribution
>Thisdistributionhasthreeparameters.
x-U—x
exp[-(1+m丁)刃,"0
F(x)=Ix°_
exp[-exp(-----=0
r“thelocationparameterofthelimitingdistribution,whichisameasureofthe
centraltendencyofMn.
r,thescaleparameterofthelimitingdistribution,whichisameasureofthe
dispersionofMn.
r,thetailindex,givesanindicationoftheshape(orheaviness)ofthetailofthe
limitingdistribution.
•When5>0:Frechetdistribution,heavytails,I次et-dist,Paretodist.
•When5=0:Gumbeldistribution,lighttails,likenormalorlognormaldist.
■When5<0:Weibulldistribution,verylighttails,notusefulformodelling
financialreturns.
45-201
行业•创新•憎值
♦2.GeneralizedExtremeValueDistribution
三
S
U
E
>
三
q一
R
q
o
」
d
46-201
行业•创新•憎值
♦2.GeneralizedExtremeValueDistribution
>HowdowechoosebetweentheGumbelandtheFrechet?
•WechoosetheEVdistributiontowhichtheextremesfromtheparent
distributionwilltend.
•Wecouldtestthesignificanceofthetailindex,andwemightchoose
theGumbelifthetailindexwasinsignificantandtheFrechetotherwise.
•Giventhedangersofmodelrisk,theestimatedriskmeasureincreases
withthetailindex,asaferoptionisalwaystochoosetheFrechet.
47-201
行业•创新•憎值
♦2.GeneralizedExtremeValueDistribution
>EstimationofEVP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度食品行业员工工资支付合同范本3篇
- 2024智慧城市公共安全监控系统合同
- 2025年度智能厨房设备承包服务合同范本3篇
- 二零二五年餐厅合伙人联合推广宣传合同3篇
- 二零二五版单位职工食堂员工健康饮食指导承包协议3篇
- 2024高端装备制造业国际合作框架合同
- 二零二五年新材料企业股份代持与研发合作合同3篇
- 2025年度采矿权抵押融资法律服务协议书3篇
- 2025年度绿色食品配送中心员工劳务合同范本3篇
- 2024年长期战略联盟协议
- 2025年度土地经营权流转合同补充条款范本
- 南通市2025届高三第一次调研测试(一模)地理试卷(含答案 )
- Python试题库(附参考答案)
- 聚酯合成副反应介绍
- DB37-T 1342-2021平原水库工程设计规范
- 电除颤教学课件
- 广东省药品电子交易平台结算门户系统会员操作手册
- DB32T 3960-2020 抗水性自修复稳定土基层施工技术规范
- 大断面隧道设计技术基本原理
- 41某31层框架结构住宅预算书工程概算表
- 成都市国土资源局关于加强国有建设用地土地用途变更和
评论
0/150
提交评论