2004年江苏高考数学真题及答案_第1页
2004年江苏高考数学真题及答案_第2页
2004年江苏高考数学真题及答案_第3页
2004年江苏高考数学真题及答案_第4页
2004年江苏高考数学真题及答案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页|共页2004年江苏高考数学真题及答案一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={},则P∩Q等于()(A){1,2}(B){3,4}(C){1}(D){-2,-1,0,1,2}2.函数y=2cos2x+1(x∈R)的最小正周期为()(A)(B)(C)(D)3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有()(A)140种(B)120种(C)35种(D)34种4.一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是()(A)(B)(C)(D)5.若双曲线的一条准线与抛物线的准线重合,则双曲线的离心率为()(A)(B)(C)4(D)6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为()(A)0.6小时(B)0.9小时(C)1.0小时(D)1.5小时0.50.5人数(人)时间(小时)2010501.01.52.0157.的展开式中x3的系数是()(A)6(B)12(C)24(D)488.若函数的图象过两点(-1,0)和(0,1),则()(A)a=2,b=2(B)a=EQ\r(,2),b=2(C)a=2,b=1(D)a=EQ\r(,2),b=EQ\r(,2)9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是()(A)EQ\F(5,216)(B)EQ\F(25,216)(C)EQ\F(31,216)(D)EQ\F(91,216)10.函数在闭区间[-3,0]上的最大值、最小值分别是()(A)1,-1(B)1,-17(C)3,-17(D)9,-1911.设k>1,f(x)=k(x-1)(x∈R).在平面直角坐标系xOy中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f-1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于()(A)3(B)EQ\F(3,2)(C)EQ\F(4,3)(D)EQ\F(6,5)12.设函数,区间M=[a,b](a<b),集合N={},则使M=N成立的实数对(a,b)有()(A)0个(B)1个(C)2个(D)无数多个二、填空题(4分×4=16分)13.二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:x-3-2-101234y60-4-6-6-406则不等式ax2+bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),且a4=54,则a1的数值是_______________________.16.平面向量a,b中,已知a=(4,-3),=1,且ab=5,则向量b=__________.三、解答题(12分×5+14分=74分)17.已知0<α<,tan+cot=,求sin()的值.18.在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);·B1PACDA1C·B1PACDA1C1D1BOH·(Ⅲ)求点P到平面ABD1的距离.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.设无穷等差数列{an}的前n项和为Sn.(Ⅰ)若首项EQ\F(3,2),公差,求满足的正整数k;(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有成立.21.已知椭圆的中心在原点,离心率为EQ\F(1,2),一个焦点是F(-m,0)(m是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线与y轴交于点M.若,求直线的斜率.22.已知函数满足下列条件:对任意的实数x1,x2都有和,其中是大于0的常数.设实数a0,a,b满足和(Ⅰ)证明,并且不存在,使得;(Ⅱ)证明;(Ⅲ)证明.2004年高考数学江苏卷答案选择题题号123456789101112答案ABDCABCADCBA填空题13、;14、;15、2;16、解答题(17)由已知得:得,,,从而(18)(1)连结BP,平面,与平面所成角就是,,在中,为直角,,故,在中,为直角,,,即直线AP与平面所成角为。(2)连结,四边形是正方形,,又平面,,,平面,由于平面,,又平面的斜线在这个平面内的射影是,.(3)连结,在平面中,过点P作于点Q,AB⊥平面,PQ平面,PQ⊥AB,PQ⊥平面,PQ就是点P到平面ABD1的距离,在中,,,即点P到平面ABD1的距离为。(19)设投资人分别用x万元、y万元投资甲、乙两个项目,由题意:,目标函数,上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域。作直线,并作平行于直线的一组直线,与可行域相交,其中有一条直线经过可行域上的点M,且与直线的距离最大,这里M点是直线和直线的交点,解方程组得,此时(万元),,当时,最得最大值。答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大。(20)(1)当时,,由得,,即,又,所以。(2)设数列的公差为,则在中分别取得即,由(1)得或。当时,代入(2)得:或;当时,,从而成立;当时,则,由,知,,故所得数列不符合题意;当时,或,当,时,,从而成立;当,时,则,从而成立,综上共有3个满足条件的无穷等差数列;或或。(21)(1)设所求椭圆方程是由已知得,所以,故所求椭圆方程是(2)设,直线,则点,当时,由于,,由定比分点坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论