版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考题同步试卷:随机现象的变化趋势一、选择题(共3小题)1.(广州)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图所示,该调查的方式是(),图中的a的值是()A.全面调查,26 B.全面调查,24 C.抽样调查,26 D.抽样调查,242.(杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长3.(广元)2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6 B.极差是2 C.平均数是6 D.方差是4二、解答题(共27小题)4.(西双版纳)某市教师的身体健康成为一个大家关注的问题,为此该市^教师健康情况进行﹣次抽样调查,把教师的身体健康情况分为健康、亚健康、不健康三种,并将调查结果绘制成如下不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名教师;(2)请补全条形统计图;(3)求出扇形统计图中不健康教师所占的圆心角的度数;(4)根据调查结果,估计一下该市2000名教师中亚健康和健康的教师共有多少人?5.(庆阳)某校为深入推进“阳光体育运动”,决定开展学生“每天锻炼一小时”活动,调查了A、B、C、D四类运动项目,下面是这次调查结果统计图.请你结合图中信息解答下列问题:(1)补全两个统计图;(2)该校有学生1500名,估计其中喜欢C类运动项目的学生人数;(3)根据统计结果,你能做什么推断?请写出一条即可.6.(丹东)丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.7.(西藏)今年某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”,学校德育处为了了解学生对城市核心价值观中哪一项内容感兴趣,随机抽取了部分学生进行调查,并将调查结果绘制成如图1的统计图.请你结合图中信息解答下列问题:(1)填空:该校共调查了名学生;(2)请把条形统计图补充完整;(3)扇形统计图中“尚德“所对应的圆心角是度;(4)若该校共有3000名学生,请你估计全校对“诚信“最感兴趣的人数.8.(天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.9.(兰州)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?10.(株洲)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?11.(仙桃)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?12.(临沂)2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:(1)本次调查共选取名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?13.(镇江)某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:根据所给信息,解决下列问题:(1)a=,b=;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.14.(无锡)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图:请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇形统计图中“艺术鉴赏”部分的圆心角是度;(2)请把这个条形统计图补充完整;(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.15.(重庆)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制了如图所示的统计图,由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.16.(苏州)某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2)如果测试成绩(等级)为A,B,C级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.17.(攀枝花)为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.18.(吉林)“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:根据上述信息,解答下列问题:(1)抽取的学生人数为;(2)将两幅统计图补充完整;(3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数.19.(六盘水)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1﹣﹣1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式.(2)计算本次调查的学生人数和图(2)选项C的圆心角度数.(3)请根据图(1)中选项B的部分补充完整.(4)若该校有3000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.20.(义乌市)在义乌市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为:“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的学生有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人?21.(孝感)如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?22.(绍兴)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?23.(衡阳)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是;(3)求图②中表示家长“无所谓”的扇形圆心角的度数.24.(岳阳)某市为了更好地加强城市建设,实现美丽梦想,就社会热点问题广泛征求市民意见,方式是发放调查表:要求每位被调查人员写一个最关心的有关城市建设问题的建议,经统计整理绘制出(a),(b)两幅不完整统计图,请根据统计图提供的信息解答下列问题:(1)本次上交调查表的总人数为多少?(2)求关心“道路交通”部分的人数,并补充完整条形统计图.25.(东营)东营市“创建文明城市”活动如火如荼的展开.某中学为了搞好“创城”活动的宣传,校学生会就本校学生对东营“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如图所示的两幅不完整的统计图(A:59分及以下;B:60﹣69分;C:70﹣79分;D:80﹣89分;E:90﹣100分).请你根据图中提供的信息解答以下问题:(1)求该校共有多少名学生;(2)将条形统计图补充完整;(3)在扇形统计图中,计算出“60﹣69分”部分所对应的圆心角的度数;(4)从该校中任选一名学生,其测试成绩为“90﹣100分”的概率是多少?26.(深圳)2013年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款100元”、“穿绿马甲维护交通”.如图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)实施首日,该片区行人闯红灯违法受处罚一共人;(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是%;(3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图;(4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于度.27.(鄂尔多斯)某校为了解学生的课外阅读情况,就“我最喜爱的课外读物”对文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),并根据调查结果绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次被调查的学生共有多少名?(2)请将条形统计图补充完整;并在扇形统计图中,计算出“其他类”所对应的圆心角的度数;(3)若该校有2400名学生,请你估计该校喜爱“科普类”的学生有多少名.28.(丽水)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?29.(泸州)某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.30.(盘锦)某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题:(1)本次问卷调查共调查了多少名观众?(2)补全图1中的条形统计图;并求出图2中收看“综艺节目”的人数占调查总人数的百分比;(3)求出图2中“科普节目”在扇形图中所对应的圆心角的度数;(4)现有喜欢“新闻节目”(记为A)、“体育节目”(记为B)、“综艺节目”(记为C)、“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率.
参考答案与试题解析一、选择题(共3小题)1.(广州)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图所示,该调查的方式是(),图中的a的值是()A.全面调查,26 B.全面调查,24 C.抽样调查,26 D.抽样调查,24【考点】条形统计图;全面调查与抽样调查.【分析】根据关键语句“先随机抽取50名中学生进行该问卷调查”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可.【解答】解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D.【点评】此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.2.(杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长【考点】条形统计图.【分析】根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP逐年增长.【解答】解:A、2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故A选项错误;B、2012年杭州市的GDP约为7900,2008年GDP约为4900,故B选项错误;C、2010年杭州市的GDP超过到5500亿元,故C选项错误;D、2008~2012年杭州市的GDP逐年增长,故D选项正确,故选:D.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.3.(广元)2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6 B.极差是2 C.平均数是6 D.方差是4【考点】条形统计图;加权平均数;众数;极差;方差.【分析】众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.【解答】解:这组数据6出现了6次,最多,所以这组数据的众数为6;这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;这组数据的平均数=(5×2+6×6+7×2)=6;这组数据的方差S2=[2•(5﹣6)2+6•(6﹣6)2+2•(7﹣6)2]=0.4;所以四个选项中,A、B、C正确,D错误.故选D.【点评】本题考查了方差的定义和意义:数据x1,x2,…xn,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.也考查了平均数和众数以及极差的概念.二、解答题(共27小题)4.(西双版纳)某市教师的身体健康成为一个大家关注的问题,为此该市^教师健康情况进行﹣次抽样调查,把教师的身体健康情况分为健康、亚健康、不健康三种,并将调查结果绘制成如下不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名教师;(2)请补全条形统计图;(3)求出扇形统计图中不健康教师所占的圆心角的度数;(4)根据调查结果,估计一下该市2000名教师中亚健康和健康的教师共有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据亚健康的人数和所占的百分比求出总人数;(2)用总人数减去亚健康和健康的人数,求出不健康的人数,从而补全统计图;(3)用不健康所占的百分比乘以360°,即可得出答案;(4)用全市的总的教师数乘以亚健康和健康所占的百分比,即可得出答案.【解答】解:(1)此次抽样调查中,共调查教师:120÷60%=200(名);故答案为:200;(2)不健康的人数为:200﹣50﹣120=30(名),补全图形如图所示:(3)在扇形统计图中不健康教师所占的圆心角的度数为:(100%﹣60%﹣25%)×360°=54°;(4)根据调查结果,可以估计该市2000名教师中亚健康和健康的教师人数为:2000×(60%+25%)=2000×85%=1700(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.5.(庆阳)某校为深入推进“阳光体育运动”,决定开展学生“每天锻炼一小时”活动,调查了A、B、C、D四类运动项目,下面是这次调查结果统计图.请你结合图中信息解答下列问题:(1)补全两个统计图;(2)该校有学生1500名,估计其中喜欢C类运动项目的学生人数;(3)根据统计结果,你能做什么推断?请写出一条即可.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜欢A项目的有42人,所占的百分比是42%,即可求得调查的总人数,然后利用总人数减去其它组的人数即可求得喜欢B项目的人数,进而求得所占的百分比,补全统计图;(2)利用总人数1500乘以对应的百分比即可;(3)只要合理即可,答案不唯一.【解答】解:(1)调查的总人数是:42÷42%=100(人),则B项目的人数是:100﹣42﹣8﹣20=30(人),则B项目的人数所占的百分比是:×100%=30%.;(2)喜欢C类运动项目的学生人数:1500×8%=120(人);(3)学生喜欢A项目的人数最多.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.6.(丹东)丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是72°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据大鹿口的人数是30人,所占的百分比是10%,据此即可求得调查的总人数;(2)根据百分比的意义求得首先凤凰山的人数以及选择河口以及市区景区的人数所占的百分比,即可补全统计图;(3)利用360度乘以对应的百分比即可求解;(4)利用总人数2000乘以对应的百分比即可.【解答】解:(1)调查的总人数是:30÷10%=300(人);(2)凤凰山的人数是:300×20%=60(人),选择河口的人数所占的比例:×100%=33%,选择市内景区的所占比例:×100%=25%,;(3)“凤凰山”部分的圆心角是:360×20%=72°,故答案是:72;(4)估计首选去河口的人数约为:2000×33%=660(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.(西藏)今年某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”,学校德育处为了了解学生对城市核心价值观中哪一项内容感兴趣,随机抽取了部分学生进行调查,并将调查结果绘制成如图1的统计图.请你结合图中信息解答下列问题:(1)填空:该校共调查了500名学生;(2)请把条形统计图补充完整;(3)扇形统计图中“尚德“所对应的圆心角是72度;(4)若该校共有3000名学生,请你估计全校对“诚信“最感兴趣的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用最感兴趣为“包容”的人数除以它所占的百分比即可得到调查学生的总数;(2)用总人数分别减去其他各项的人数得到最感兴趣为“诚信”的人数为125名,再补全条形统计图;(3)计算出“尚德”所占百分比,再用360°×“尚德”所占百分比可得答案;(4)用3000乘以最感兴趣为“诚信”所占百分比即可.【解答】解:(1)150÷30%=500(名),所以该校共调查了500名学生;(2)最感兴趣为“诚信”的人数=500﹣150﹣100﹣50﹣75=125(名),条形统计图补充如下:(3)100÷500×100%=20%,360°×20%=72°;(4)3000×25%=750(人).所以该校共有3000名学生,估计全校对“诚信”最感兴趣的人数为750人.故答案为500;72.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.8.(天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为50,图①中m的值是32;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.【分析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;(3)根据样本中捐款10元的人数,进而得出该校本次活动捐款金额为10元的学生人数.【解答】解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15+15)=15;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.故答案为:50,32.【点评】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.9.(兰州)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是20%,其所在扇形统计图中的圆心角的度数是72°;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用1减去其它各组所占的比例即可求得喜欢B项目的人数百分比,利用百分比乘以360度即可求得扇形的圆心角的度数;(2)根据喜欢A的有44人,占44%即可求得调查的总人数,乘以对应的百分比即可求得喜欢B的人数,作出统计图;(3)总人数1000乘以喜欢乒乓球的人数所占的百分比即可求解.【解答】解:(1)1﹣44%﹣8%﹣28%=20%,所在扇形统计图中的圆心角的度数是:360×20%=72°;(2)调查的总人数是:44÷44%=100(人),则喜欢B的人数是:100×20%=20(人),;(3)全校喜欢乒乓球的人数是1000×44%=440(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.10.(株洲)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为40%,其所在扇形统计图中对应的圆心角度数是144度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用100%减去D、C、B三部分所占百分比即可得到最喜欢A项目的人数所占的百分比;所在扇形统计图中对应的圆心角度数用360°×40%即可;(2)根据频数=总数×百分比可算出总人数,再利用总人数减去D、C、B三部分的人数即可得到A部分的人数,再补全图形即可;(3)利用样本估计总每个体的方法用1000×样本中喜欢踢毽子的人数所占百分比即可.【解答】解:(1)100%﹣20%﹣10%﹣30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50,50﹣15﹣5﹣10=20(人).如图所示:(3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.【点评】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.11.(仙桃)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共3吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?【考点】条形统计图;扇形统计图.【分析】(1)根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;(2)求得C组所占的百分比,即可求得C组的垃圾总量;(3)首先求得可回收垃圾量,然后求得塑料颗粒料即可;【解答】解:(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%,∴有害垃圾为:50×6%=3吨;(3)(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.12.(临沂)2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:(1)本次调查共选取80名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据为A的人数与所占的百分比列式计算即可求出被调查的居民人数;(2)求出为C的人数,得到所占的百分比,然后乘以360°,从而求出扇形统计图中“C”所对扇形的圆心角的度数,然后补全条形统计图即可;(3)用全区总人数乘以从不闯红灯的人数所占的百分比,进行计算即可得解.【解答】解:(1)本次调查的居民人数=56÷70%=80人;(2)为“C”的人数为:80﹣56﹣12﹣4=8人,“C”所对扇形的圆心角的度数为:×360°=36°补全统计图如图;(3)该区从不闯红灯的人数=1600×70%=1120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.13.(镇江)某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:根据所给信息,解决下列问题:(1)a=55,b=5;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据甲的圆心角度数是108°,求出所占的百分比,再根据总袋数求出甲种大米的袋数,即可求出a、b的值;(2)根据题意得先求出该超市乙种大米中B级大米所占的百分比,再乘以乙种大米的总袋数即可;(3)分别求出超市的甲种大米A等级大米所占的百分比和丙种大米A等级大米所占的百分比,即可得出答案.【解答】解:(1)∵甲的圆心角度数是108°,所占的百分比是×100=30%,∴甲种大米的袋数是:200×30%=60(袋),∴a=60﹣5=55(袋),∴b=200﹣60﹣65﹣10﹣60=5(袋);故答案为:55,5;(2)根据题意得:750×=100(袋),答:该超市乙种大米中有100袋B级大米;(3)∵超市的甲种大米A等级大米所占的百分比是×100%=91.7%,丙种大米A等级大米所占的百分比是×100%=92.3%,∴应选择购买丙种大米.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.14.(无锡)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图:请根据图中提供的信息,解答下面的问题:(1)此次共调查了200名学生,扇形统计图中“艺术鉴赏”部分的圆心角是144度;(2)请把这个条形统计图补充完整;(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据阅读写作的人数和所占的百分比,即可求出总学生数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出答案;(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图;(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案.【解答】解:根据题意得:调查的总学生数是:50÷25%=200(名),“艺术鉴赏”部分的圆心角是×360°=144°;故答案为:200,144;(2)数学思维的人数是:200﹣80﹣30﹣50=40(名),补图如下:(3)根据题意得:800×=120(名),答:其中有120名学生选修“科技制作”项目.【点评】本题考查的是条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.15.(重庆)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制了如图所示的统计图,由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)利用100%减去A、C、D所占百分比,即可算出X的值;再利用A中的人数÷所占百分比=总人数,再利用总人数各乘以B、C所占百分比即可算出人数,再补全图形即可;(2)根据已知画出树状图,进而利用概率公式求出即可.【解答】解:(1)x%=1﹣45%﹣10%﹣15%=30%,故x=30,总人数是:180÷45%=400(人),B等级的人数是:400×30%=120(人),C等级的人数是:400×10%=40(人);(2)设两组分别为A,B,其中4个人分别为:A1,A2,B1,B2,根据题意画树状图得出:,则选出的2人来自不同小组的情况有8种,故选出的2人来自不同小组的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,以及概率求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16.(苏州)某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2)如果测试成绩(等级)为A,B,C级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)抽查人数的样本容量可由A级所占的比例40%,根据总数=某级人数÷比例来计算;可由总数减去A、C、D、E的人数求得B级的人数,再补全条形统计图;(2)用样本估计总体,用总人数×达到优秀的员工的百分比,就是要求的结果.【解答】解:(1)依题意有:20÷40%=50(人),则这次抽样调查的样本容量为50.50﹣20﹣5﹣8﹣5=12(人).补全图①为:(2)依题意有500×=370(人).答:估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数为370人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.会画条形统计图.也考查了用样本估计总体.17.(攀枝花)为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据投稿6篇的班级个数是3个,所占的比例是25%,可求总共班级个数,利用投稿篇数为2的比例乘以360°即可求解;(2)根据加权平均数公式可求该校八,九年级各班在这一周内投稿的平均篇数,再用总共班级个数﹣不同投稿情况的班级个数即可求解:(3)利用树状图法,然后利用概率的计算公式即可求解.【解答】解:(1)3÷25%=12(个),×360°=30°.故投稿篇数为2所对应的扇形的圆心角的度数为30°;(2)12﹣1﹣2﹣3﹣4=2(个),(2+3×2+5×2+6×3+9×4)÷12=72÷12=6(篇),将该条形统计图补充完整为:(3)画树状图如下:总共12种情况,不在同一年级的有8种情况,所选两个班正好不在同一年级的概率为:8÷12=.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(吉林)“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:根据上述信息,解答下列问题:(1)抽取的学生人数为200;(2)将两幅统计图补充完整;(3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据扇形统计图所给的数据,求出赞成的所占的百分比,再根据赞成的人数,即可求出总人数;(2)根据总人数和所占的百分比,即可补全统计图;(3)用赞成所占的百分比乘以总人数,即可得出该校1200名学生中对“光盘行动”持赞成态度的人数.【解答】解:(1)赞成的所占的百分比是1﹣30%﹣10%=60%,抽取的学生人数为:120÷60%=200(人);故答案为:200.(2)根据题意得:无所谓的人数是:200×30%=60(人),反对的人数是:200×10%=20(人),补图如下:(3)根据题意得:1200×60%=720(人),答:该校1200名学生中对“光盘行动”持赞成态度的人数有720人.【点评】此题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(六盘水)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1﹣﹣1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了抽样调查方式.(2)计算本次调查的学生人数和图(2)选项C的圆心角度数.(3)请根据图(1)中选项B的部分补充完整.(4)若该校有3000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据题意可得这次调查是抽样调查;(2)利用选A的人数÷选A的人数所占百分比即可算出总数;再利用360°×选C的人数所占百分比即可得到圆心角度数;(3)用总数减去选A、C、D的人数即可得到选B的人数,再补全图形即可;(4)根据样本估计总体的方法计算即可.【解答】解:(1)抽样调查;(2)本次调查的学生人数:60÷30%=200(人),选项C的圆心角度数:360°×=54°;(3)选B的人数:200﹣60﹣30﹣10=100(人),如图所示:(4)3000×5%=150(人),答:该校可能有150名学生平均每天参加体育活动的时间在0.5小时以下.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(义乌市)在义乌市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为:“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了200名学生;(2)被调查的学生中,最喜爱丁类图书的学生有15人,最喜爱甲类图书的人数占本次被调查人数的40%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.【解答】解:(1)共调查的学生数:40÷20%=200(人);(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,1.5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(孝感)如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?【考点】条形统计图;列表法与树状图法;游戏公平性.【分析】(1)假设出去B地的人数为x,根据去B地参加夏令营活动人数占总人数的40%,进而得出方程求出即可;(2)根据已知列表得出所有可能,进而利用概率公式求出即可.【解答】解:(1)设去B地的人数为x,则由题意有:;解得:x=40.∴去B地的人数为40人.(2)列表:4(1,4)(2,4)(3,4)(4,4)3(1,3)(2,3)(3,3)(4,3)2(1,2)(2,2)(3,2)(4,2)1(1,1)(2,1)(3,1)(4,1)1234∴姐姐能参加的概率,弟弟能参加的概率为,∵<,∴不公平.【点评】此题主要考查了条形统计图以及列表法求出概率和游戏公平性等知识,正确列举出所有可能是解题关键.22.(绍兴)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用条形统计图可得喜欢羽毛球的人数有30人,根据扇形统计图可得喜欢羽毛球的人数有15%,利用30÷15%即可得到被调查的总人数;用总人数﹣喜欢乒乓球的人数﹣喜欢篮球的人数﹣喜欢羽毛球的人数﹣喜欢排球的人数可得喜欢跳绳的人数,再补图即可;(2)计算出调查的人数中喜欢篮球和排球的人数所占百分比,再乘以1200即可.【解答】解:(1)这次被调查的学生总数:30÷15%=200(人),跳绳人数:200﹣70﹣40﹣30﹣12=48,如图所示:(2)1200××100%=312(人).答:全校有1200名同学,估计全校最喜欢篮球和排球的共有312名同学.【点评】本题考查的是条形统计图和扇形统计图的综合运用,以及样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(衡阳)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为600.家长表示“不赞同”的人数为80;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是60%;(3)求图②中表示家长“无所谓”的扇形圆心角的度数.【考点】条形统计图;扇形统计图;概率公式.【分析】(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;(2)根据扇形统计图即可得到恰好是“赞同”的家长的概率;(3)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解.【解答】解:(1)调查的家长总数为:360÷60%=600人,很赞同的人数:600×20%=120人,不赞同的人数:600﹣120﹣360﹣40=80人;(2)“赞同”态度的家长的概率是60%;(3)表示家长“无所谓”的圆心角的度数为:×360°=24°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(岳阳)某市为了更好地加强城市建设,实现美丽梦想,就社会热点问题广泛征求市民意见,方式是发放调查表:要求每位被调查人员写一个最关心的有关城市建设问题的建议,经统计整理绘制出(a),(b)两幅不完整统计图,请根据统计图提供的信息解答下列问题:(1)本次上交调查表的总人数为多少?(2)求关心“道路交通”部分的人数,并补充完整条形统计图.【考点】条形统计图;扇形统计图.【分析】(1)根据环境保护所占的百分比和环境保护的人数,即可求出总人数;(2)用整体1减去其它所占的百分比,求出关心“道路交通”部分的人数所占的百分比,再乘以总人数,即可得出关心“道路交通”部分的人数,从而补全统计图.【解答】解:(1)根据题意意得:900÷30%=3000(人),答:本次上交调查表的总人数为3000人;(2)关心“道路交通”部分的人数所占的百分比是:1﹣30%﹣25%﹣20%﹣5%=20%,则关心“道路交通”部分的人数是:3000×20%=600(人).补全条形统计图如下:【点评】本题考查的是条形统计图和扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(东营)东营市“创建文明城市”活动如火如荼的展开.某中学为了搞好“创城”活动的宣传,校学生会就本校学生对东营“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如图所示的两幅不完整的统计图(A:59分及以下;B:60﹣69分;C:70﹣79分;D:80﹣89分;E:90﹣100分).请你根据图中提供的信息解答以下问题:(1)求该校共有多少名学生;(2)将条形统计图补充完整;(3)在扇形统计图中,计算出“60﹣69分”部分所对应的圆心角的度数;(4)从该校中任选一名学生,其测试成绩为“90﹣100分”的概率是多少?【考点】条形统计图;扇形统计图;概率公式.【分析】(1)根据扇形图可得70﹣79分的学生占总体的30%,由条形图可得70﹣79分的学生有300人,利用总数=频数÷所占百分比进行计算即可;(2)首先计算出59分及以下、80﹣89分的学生人数,再补图;(3)首先计算出60﹣69分部分的学生所占百分比,再利用360°×百分比即可;(4)成绩为“90﹣100分”的学生有50人,用50:总人数1000即可.【解答】解:(1)该学校的学生人数是:300÷30%=1000(人).(2)1000×10%=100(人),1000×35%=350(人),条形统计图如图所示.(3)在扇形统计图中,“60﹣69分”部分所对应的圆心角的度数是:360°×(×100%)=72°;(4)从该校中任选一名学生,其测试成绩为“90﹣100分”的概率是:=.【点评】此题主要考查了扇形统计图、条形统计图,以及概率,关键是正确理解图中所表示的意义,从图中获取正确的信息.26.(深圳)2013年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款100元”、“穿绿马甲维护交通”.如图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)实施首日,该片区行人闯红灯违法受处罚一共200人;(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是65%;(3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图;(4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于72度.【考点】条形统计图;扇形统计图.【分析】(1)根据罚款100元的有10人,占的比例是5%,即可求得调查的总人数;(2)百分比的定义即可求解;(3)求得先“罚款20元”人数是“罚款50元”人数的和,然后根据“罚款20元”人数是“罚款50元”人数的2倍,即可求得各自的人数,从而作出统计图;(4)利用360度乘以对应的比例即可求得.【解答】解:(1)10÷5%=200(人).故答案是:200;(2)×100%=65%,故答案是:65;(3)“罚款20元”人数是“罚款50元”人数的和是:200﹣10﹣130=60(人),则罚款20元”人数是40人,“罚款50元”人数是20.;(4)“罚款20元”所在扇形的圆心角等于360×=72°.故答案是:72.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(鄂尔多斯)某校为了解学生的课外阅读情况,就“我最喜爱的课外读物”对文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),并根据调查结果绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次被调查的学生共有多少名?(2)请将条形统计图补充完整;并在扇形统计图中,计算出“其他类”所对应的圆心角的度数;(3)若该校有2400名学生,请你估计该校喜爱“科普类”的学生有多少名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用喜欢文学的人数除以其所占的百分比即可求得调查的学生总数;(2)用总人数乘以每种情况所占的百分比后即可求得每一个小组的频数,从而补全统计图;(3)首先求得喜欢科普类的学生所占的百分比,然后确定喜爱科普类的学生数即可.【解答】解:(1)60÷30%=200(人).答:这次调查的学生共有200人.(2)200×20%=40(人)补充条形统计图(艺术)200﹣(60+80+40)=20(人)补充条形统计图(其他)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度打桩工程劳务分包合同环保要求3篇
- miR-214-5p在食管鳞癌增殖和转移中的作用及机制研究
- 多组学解析Bacillus sp. lzu651增强紫花苜蓿耐盐性的机制
- 二零二五年度民办企业高级技术人才引进与培养协议
- 基于LBM和MCRT的双层皮幕墙模拟分析
- 二零二五年度数字货币交易离婚协议
- 淋巴瘤外周免疫细胞亚群与含ADC方案疗效的关系探索
- 二零二四年度智慧城市建设委托规划合同3篇
- 二零二四年度医疗器械销售代理授权合同
- 认罪认罚从宽制度中被害人权益保护研究
- 2024年同等学力申硕英语考试真题
- 世说新语原文及翻译-副本
- 消除“艾梅乙”医疗歧视-从我做起
- 非遗文化走进数字展厅+大数据与互联网系创业计划书
- 2024山西省文化旅游投资控股集团有限公司招聘笔试参考题库附带答案详解
- 科普知识进社区活动总结与反思
- 加油站廉洁培训课件
- 现金日记账模板(带公式)
- 消化内科专科监测指标汇总分析
- 深圳市物业专项维修资金管理系统操作手册(电子票据)
- 混凝土结构工程施工质量验收规范
评论
0/150
提交评论