版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学真题分类训练——专题十三:图形的变换一、选择题1.(江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有A.3种 B.4种 C.5种 D.6种【答案】D2.(金华)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是A. B.1 C. D.【答案】A3.(北京)下列倡导节约的图案中,是轴对称图形的是A. B.C. D.【答案】C4.(舟山)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是A.(2,–1) B.(1,–2) C.(–2,1) D.(–2,–1)【答案】A5.(海南)如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.21【答案】C6.(绍兴)在平面直角坐标系中,抛物线y=(x+5)(x–3)经变换后得到抛物线y=(x+3)(x–5),则这个变换可以是A.向左平移2个单位 B.向右平移2个单位 C.向左平移8个单位 D.向右平移8个单位【答案】B7.(河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为A.10 B.6 C.3 D.2【答案】C8.(贵阳)如图,在3×3的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是A. B. C. D.【答案】D9.(福建)下列图形中,一定既是轴对称图形又是中心对称图形的是A.等边三角形 B.直角三角形 C.平行四边形 D.正方形【答案】D10.(广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A. B. C. D.【答案】C11.(黑龙江)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A. B.C. D.【答案】C12.(吉林)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30° B.90° C.120° D.180°【答案】C13.(黄冈)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是A.(6,1) B.(–2,1) C.(2,5) D.(2,–3)【答案】D14.(海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1) B.(1,0) C.(–1,0) D.(3,0)【答案】C15.(湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5) B.(5,1) C.(2,4) D.(4,2)【答案】B16.(云南)下列图形既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】B17.(乐山)下列四个图形中,可以由下图通过平移得到的是A. B. C. D.【答案】D二、填空题18.(新疆)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.【答案】2–219.(海南)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF.若AB=3,AC=2,且α+β=∠B,则EF=__________.【答案】20.(山西)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.【答案】10–221.(杭州)如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为点,D点的对称点为点,若,的面积为4,的面积为1,则矩形ABCD的面积等于__________.【答案】22.(温州)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为__________分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'–BE为__________分米.【答案】5+5,4.三、解答题23.(宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.24.(安徽)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段C D.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【答案】(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.25.(黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).解:(1)如下图所示,点A1的坐标是(–4,1);(2)如下图所示,点A2的坐标是(1,–4);(3)∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:=.26.(绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.解:(1)①AM=AD+DM=40,或AM=AD–DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2–DM2=302–102=800,∴AM=20或(–20舍弃).当∠ADM为直角时,AM2=AD2+DM2=302+102=1000,∴AM=10或(–10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD1.由题意得∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,又∵∠AD2C=135°,∴∠CD2D1=90°,∴CD130,∵∠BAC=∠D2AD1=90°,∴∠BAC–∠CAD2=∠D2AD1–∠CAD2,∴∠BAD2=∠CAD1,∵AB=AC,AD2=AD1,∴△ABD2≌△ACD1,∴BD2=CD1=30.27.(金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.解:(1)证明:由旋转性质得:CD=CF,∠DCF=90°.∵△ABC是等腰直角三角形,AD=BD.∴∠ADO=90°,CD=BD=AD,∴∠DCF=∠ADC.在△ADO和△FCO中,,∴△ADO≌△FCO.∴DO=CO.∴BD=CD=2DO.(2)①如图1,分别过点D,F作DN⊥BC于点N,FM⊥BC于点M,连结BF.∴∠DNE=∠EMF=90°.又∵∠NDE=∠MEF,DE=EF,∴△DNE≌△EMF,∴DN=EM.又∵BD=7,∠ABC=45°,∴DN=EM=7,∴BM=BC–ME–EC=5,∴MF=NE=NC–EC=5.∴BF=5.∵点D,G分别是AB,AF的中点,∴DG=BF=.②过点D作DH⊥BC于点H.∵AD=6BD,AB=14,∴BD=2.i)当∠DEG=90°时,有如图2,3两种情况,设CE=t.∵∠DEF=90°,∠DEG=90°,点E在线段AF上.∴BH=DH=2,BE=14–t,HE=BE–BH=12–t.∵△DHE∽△ECA,∴,即,解得t=6±2.∴CE=6+2或CE=6–2.ii)当DG∥BC时,如图4.过点F作FK⊥BC于点K,延长DG交AC于点N,延长AC并截取MN=NA.连结FM.则NC=DH=2,MC=10.设GN=t,则FM=2t,BK=14–2t.∵△DHE∽△EKF,∴KE=DH=2,∴KF=HE=14–2t,∵MC=FK,∴14–2t=10,解得t=2.∵GN=EC=2,GN∥EC,∴四边形GECN是平行四边形,而∠ACB=90°,∴四边形GECN是矩形,∴∠EGN=90°.∴当EC=2时,有∠DGE=90°.iii)当∠EDG=90°时,如图5.过点G,F分别作AC的垂线,交射线AC于点N,M,过点E作EK⊥FM于点K,过点D作GN的垂线,交NG的延长线于点P,则PN=HC=BC–HB=12,设GN=t,则FM=2t,∴PG=PN–GN=12–t.由△DHE∽△EKF可得:FK=2,∴CE=KM=2t–2,∴HE=HC–CE=12–(2t–2)=14–2t,∴EK=HE=14–2t,AM=AC+CM=AC+EK=14+14–2t=28–2t,∴MN=AM=14–t,NC=MN–CM=t,∴PD=t–2,由△GPD∽△DHE可得,即,解得t1=10–,4=10+(舍去)。.CE=2t–2=18–2.所以,CE的长为:6–2,6+2,2或18–2.28.(福建)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.解:(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.29.(台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.解:(1)设AP=FD=a,∴AF=2–a,∵四边形ABCD是正方形,∴AB∥CD,∴△AFP∽△DFC,∴,即,∴a1,∴AP=FD1,∴AF=AD–DF=3,∴.(2)证明:如图,在CD上截取DH=AF,∵AF=DH,∠PAF=∠D=90°,AP=FD,∴△PAF≌△FDH(SAS),∴PF=FH,∵AD=CD,AF=DH,∴FD=CH=AP1,∵点E是AB中点,∴BE=AE=1=EM,∴PE=PA+AE,∵EC2=BE2+BC2=1+4=5,∴E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江横店影视职业学院《原理及现代电子系统含实验》2023-2024学年第一学期期末试卷
- 中国科学技术大学《制冷工程》2023-2024学年第一学期期末试卷
- 郑州工业安全职业学院《理论力学5》2023-2024学年第一学期期末试卷
- 肇庆医学高等专科学校《传统中国画研习》2023-2024学年第一学期期末试卷
- 企业员工职业装着装规范与要求
- DB2201T 66.2-2024 肉牛牛舍建设规范 第2部分:种公牛
- 专业案例(动力专业)-注册公用设备工程师(动力专业)《专业案例》真题汇编2
- 房地产经纪操作实务-2020年房地产经纪人协理《房地产经纪操作实务》真题汇编
- 七夕保险新品推广模板
- 下基层调研须注重实效
- 小学四年级数学知识点总结(必备8篇)
- GB/T 893-2017孔用弹性挡圈
- GB/T 11072-1989锑化铟多晶、单晶及切割片
- GB 15831-2006钢管脚手架扣件
- 医学会自律规范
- 商务沟通第二版第4章书面沟通
- 950项机电安装施工工艺标准合集(含管线套管、支吊架、风口安装)
- 微生物学与免疫学-11免疫分子课件
- 《动物遗传育种学》动物医学全套教学课件
- 弱电工程自检报告
- 民法案例分析教程(第五版)完整版课件全套ppt教学教程最全电子教案
评论
0/150
提交评论