第一实数集与函数复习课程_第1页
第一实数集与函数复习课程_第2页
第一实数集与函数复习课程_第3页
第一实数集与函数复习课程_第4页
第一实数集与函数复习课程_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章实数集与函数

§1实数§2数集确界原理§3函数的概念§4复合函数与反函数1.1实数一.实数及其性质二.绝对值与不等式

若规定:

则有限十进小数都能表示成无限循环小数.实数对正整数对负有限小数(包括负整数)y,先将-y表示成无限小数,再在无限小数前加负号.如:-8=-7.999一.实数及其性质:1.回顾中学中关于有理数和无理数的定义.说明:

对于负实数x,y,若有-x=-y与-x>-y,则分别称x=y与x<y(y>x)2.两个实数的大小关系

说明:

.自然规定任何非负实数大于任何负实数.)2,1(,,,2,1,.90,90),2,1(,,,.,.110000210210xyyxx,yyxbalkbalbay;x,yxkbaba,kba,babbbbyaaaaxllkkkkkkkknn<>>==>===££££===++或分别记为小于或大于则称而使得或存在非负整数若记为相等与则称若有为整数为非负整数其中给定两个非负实数LLLLLLL

1)定义1

对于负实数其n位不足近似和n位过剩近似分别规定为和

注意:对任何实数x,有,命题1

设实数的性质

1.实数集R对加,减,乘,除(除数不为0)四则运算是封闭的.即任意两个实数和,差,积,商(除数不为0)仍然是实数.

2.实数集是有序的.即任意两个实数a,b必满足下述三个关系之一:a<b,a=b,a>b.为两个实数,则3.实数集的大小关系具有传递性.即若a>b,b>c,则有a>c.5.实数集R具有稠密性.即任何两个不相等的实数之间必有另一个实数,且既有有理数,也有无理数.6.实数集R与数轴上的点具有一一对应关系.即任一实数都对应数轴上唯一的一点,反之,数轴上的每一点也都唯一的代表一个实数..

,

0

,

,

.

4

b

na

n

a

b

R

b

a

,

>

>

>

Î

使得

则存在正整数

即对任何

实数具有阿基米德性

例1证明例2证明.::,yrxr,yx<<满足存在有理数证明为实数设.,)(21.,yrxyyrxx,ryxryxn,yxnnnnnn<<£<<£+=<<即得且有为有理数则令使得故存在非负整数由于.,:,,babaRba£+<Î则有若对任何正数证明设ee..,,..bababababa,£+<+=-=>从而必有矛盾这与假设为正数且则令有则根据实数的有序性假若结论不成立用反证法eeeea0-a二.绝对值与不等式从数轴上看的绝对值就是到原点的距离:

绝对值定义:绝对值的一些主要性质性质4(三角不等式)的证明:由此可推出几个重要不等式:⑵均值不等式:(算术平均值)(几何平均值)(调和平均值)有平均值不等式:等号当且仅当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论