版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆阿克苏市农一师中学高三第二次诊断性检测数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A. B. C. D.2.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.3.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.44.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是()A. B. C. D.5.已知的部分图象如图所示,则的表达式是()A. B.C. D.6.复数在复平面内对应的点为则()A. B. C. D.7.已知复数z满足,则z的虚部为()A. B.i C.–1 D.18.已知集合,,则的真子集个数为()A.1个 B.2个 C.3个 D.4个9.已知a>b>0,c>1,则下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.10.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于()A.16 B.17 C.18 D.1911.若函数在时取得极值,则()A. B. C. D.12.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若变量,满足约束条件则的最大值为________.14.已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是____.15.已知复数对应的点位于第二象限,则实数的范围为______.16.设第一象限内的点(x,y)满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为40,则+的最小值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(Ⅰ)判断函数在区间上零点的个数,并证明;(Ⅱ)函数在区间上的极值点从小到大分别为,,证明:18.(12分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.19.(12分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;(2)若,求与平面所成角的正弦值.20.(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:为定值.21.(12分)已知函数,.(1)判断函数在区间上的零点的个数;(2)记函数在区间上的两个极值点分别为、,求证:.22.(10分)已知数列满足对任意都有,其前项和为,且是与的等比中项,.(1)求数列的通项公式;(2)已知数列满足,,设数列的前项和为,求大于的最小的正整数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.2、A【解析】
先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.3、D【解析】可以是共4个,选D.4、C【解析】
根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.【详解】当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.此时椭圆长轴长为,短轴长为6,所以椭圆离心率,所以.故选:C【点睛】本题考查了橢圆的定义及其性质的简单应用,属于基础题.5、D【解析】
由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,,,则,,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.6、B【解析】
求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.7、C【解析】
利用复数的四则运算可得,即可得答案.【详解】∵,∴,∴,∴复数的虚部为.故选:C.【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.8、C【解析】
求出的元素,再确定其真子集个数.【详解】由,解得或,∴中有两个元素,因此它的真子集有3个.故选:C.【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集.9、B【解析】
根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为y=cx为增函数,且a>b,所以ca>cb,正确对C,因为y=xc为增函数,故,错误;对D,因为在为减函数,故,错误故选B.【点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题.10、B【解析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出,则不符合题意,排除;若输出,则,符合题意.故选:B.【点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.11、D【解析】
对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.12、C【解析】
设,求,作为的函数,其最小值是6,利用导数知识求的最小值.【详解】设,则,记,,易知是增函数,且的值域是,∴的唯一解,且时,,时,,即,由题意,而,,∴,解得,.∴.故选:C.【点睛】本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.【点睛】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.14、【解析】
根据题意设为椭圆上任意一点,表达出,再根据二次函数的对称轴与求解的关系分析最值求解即可.【详解】因为椭圆的离心率是,,所以,故椭圆方程为.因为以为圆心且与椭圆有公共点的圆的最大半径为,所以椭圆上的点到点的距离的最大值为.设为椭圆上任意一点,则.所以因为的对称轴为.(i)当时,在上单调递增,在上单调递减.此时,解得.(ii)当时,在上单调递减.此时,解得舍去.综上,椭圆方程为.故答案为:【点睛】本题主要考查了椭圆上的点到定点的距离最值问题,需要根据题意设椭圆上的点,再求出距离,根据二次函数的对称轴与区间的关系分析最值的取值点分类讨论求解.属于中档题.15、【解析】
由复数对应的点,在第二象限,得,且,从而求出实数的范围.【详解】解:∵复数对应的点位于第二象限,∴,且,∴,故答案为:.【点睛】本题主要考查复数与复平面内对应点之间的关系,解不等式,且是解题的关键,属于基础题.16、【解析】不等式表示的平面区域阴影部分,当直线ax+by=z(a>0,b>0)过直线x−y+2=0与直线2x−y−6=0的交点(8,10)时,目标函数z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而当且仅当时取等号,则的最小值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)函数在区间上有两个零点.见解析(Ⅱ)见解析【解析】
(Ⅰ)根据题意,,利用导函数研究函数的单调性,分类讨论在区间的单调区间和极值,进而研究零点个数问题;(Ⅱ)求导,,由于在区间上的极值点从小到大分别为,,求出,利用导数结合单调性和极值点,即可证明出.【详解】解:(Ⅰ),,当时,,,在区间上单调递减,,在区间上无零点;当时,,在区间上单调递增,,在区间上唯一零点;当时,,,在区间上单调递减,,;在区间上唯一零点;综上可知,函数在区间上有两个零点.(Ⅱ),,由(Ⅰ)知在无极值点;在有极小值点,即为;在有极大值点,即为,由,即,,2…,,,,,,以及的单调性,,,,,由函数在单调递增,得,,由在单调递减,得,即,故.【点睛】本题考查利用导数研究函数的单调性和极值,通过导数解决函数零点个数问题和证明不等式,考查转化思想和计算能力.18、(1)当时,无极值;当时,极小值为;(2).【解析】
(1)求导,对参数进行分类讨论,即可容易求得函数的极值;(2)构造函数,两次求导,根据函数单调性,由恒成立问题求参数范围即可.【详解】(1)依题,当时,,函数在上单调递增,此时函数无极值;当时,令,得,令,得所以函数在上单调递增,在上单调递减.此时函数有极小值,且极小值为.综上:当时,函数无极值;当时,函数有极小值,极小值为.(2)令易得且,令所以,因为,,从而,所以,在上单调递增.又若,则所以在上单调递增,从而,所以时满足题意.若,所以,,在中,令,由(1)的单调性可知,有最小值,从而.所以所以,由零点存在性定理:,使且在上单调递减,在上单调递增.所以当时,.故当,不成立.综上所述:的取值范围为.【点睛】本题考查利用导数研究含参函数的极值,涉及由恒成立问题求参数范围的问题,属压轴题.19、(1)见解析;(2)【解析】
(Ⅰ)证明:过点作于点,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴点是的中点,连结,则∴平面∴∥,∴四边形是矩形设,得:,又∵,∴,从而,过作于点,则∴是与平面所成角∴,∴与平面所成角的正弦值为考点:面面垂直的性质定理;线面平行的判定定理;线面垂直的性质定理;直线与平面所成的角.点评:本题主要考查了线面平行的证明和直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做:用向量法解题的关键是;首先正确的建立空间直角坐标系,正确求解平面的一个法向量.注意计算要仔细、认真.≌20、(Ⅰ);(Ⅱ),证明见解析.【解析】
(Ⅰ)根据题意列出关于,,的方程组,解出,,的值,即可得到椭圆的方程;(Ⅱ)设点,,点,,易求直线的方程为:,令得,,同理可得,所以,联立直线与椭圆方程,利用韦达定理代入上式,化简即可得到.【详解】(Ⅰ)解:由题意可知:,解得,椭圆的方程为:;(Ⅱ)证:设点,,点,,联立方程,消去得:,,①,点,,,直线的方程为:,令得,,,,同理可得,,,把①式代入上式得:,为定值.【点睛】本题主要考查直线与椭圆的位置关系、定值问题的求解;关键是能够通过直线与椭圆联立得到韦达定理的形式,利用韦达定理化简三角形面积得到定值;考查计算能力与推理能力,属于中档题.21、(1);(2)见解析.【解析】
(1)利用导数分析函数在区间上的单调性与极值,结合零点存在定理可得出结论;(2)设函数的极大值点和极小值点分别为、,由(1)知,,且满足,,于是得出,由得,利用正切函数的单调性推导出,再利用正弦函数的单调性可得出结论.【详解】(1),,,当时,,,,则函数在上单调递增;当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瓷器五大领域课程设计
- 音乐盒课课程设计
- 自然课程设计的要素
- 材料专业理论课程设计
- 课课程设计书写格式
- 除尘系统课程设计
- 练臀课程设计
- 轴套机械设计课程设计
- 销售系统的课课程设计
- 调频电路课程设计报告
- 绵阳市高中2022级(2025届)高三第二次诊断性考试(二诊)历史试卷(含答案)
- 《视频压缩基础》课件
- 2025南方财经全媒体集团校园招聘63人高频重点提升(共500题)附带答案详解
- 《A机场公司人力资源管理工作实践调研报告》2600字(论文)
- 社工人才培训计划实施方案
- 四年级数学(上)计算题专项练习及答案
- 6、水平四+田径18课时大单元计划-《双手头上前掷实心球》
- 幼儿园人民币启蒙教育方案
- 军事理论(2024年版)学习通超星期末考试答案章节答案2024年
- 青岛版科学四年级下册课程纲要
- GB/T 6672-2001塑料薄膜和薄片厚度测定机械测量法
评论
0/150
提交评论