版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页专题01全等三角形性质与判定考点一全等图形识别考点二利用全等图形求正方形网格中角度之和考点三全等三角形的概念考点四全等三角形的性质考点五用SSS证明三角形全等考点六用SAS证明三角形全等考点七用ASA证明三角形全等考点八用AAS证明三角形全等考点九用HL证明三角形全等考点一全等图形识别例题:(2022·湖北省直辖县级单位·八年级期末)下列说法正确的是(
)A.两个面积相等的图形一定是全等图形 B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形 D.两个正三角形一定是全等图形【变式训练】1.(2021·山东·东营市东营区实验中学七年级阶段练习)下列图形是全等图形的是(
)A. B. C. D.2.(2022·河北沧州·八年级期末)以下四组图形中,与如下图形全等的是(
)A. B. C. D.考点二利用全等图形求正方形网格中角度之和例题:(2021·全国·八年级专题练习)如图为6个边长相等的正方形的组合图形,则∠1+∠3-∠2=(
)A.30° B.45° C.60° D.135°【变式训练】1.(2022·山东·济南市槐荫区教育教学研究中心二模)如图,在的正方形网格中,求______度.2.(2020·江苏省灌云高级中学城西分校八年级阶段练习)如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=________度.考点三全等三角形的概念例题:(2021·福建·福州三牧中学八年级期中)有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个【变式训练】1.(2022·上海·七年级专题练习)如图,在△ABC和△A′B′C′中,已知AB=A′B′,∠A=∠A′,AC=A′C′,那么△ABC≌△A′B′C′.说理过程如下:把△ABC放到△A′B′C′上,使点A与点A′重合,由于=,所以可以使点B与点B′重合.又因为=,所以射线能落在射线上,这时因为=,所以点与重合.这样△ABC和△A′B′C′重合,即△ABC≌△A′B′C′.考点四全等三角形的性质例题:(2021·重庆大足·八年级期末)如图,和全等,且,对应.若,,,则的长为(
)A.4 B.5 C.6 D.无法确定【变式训练】1.(2022·云南昆明·三模)如图,,若,则的度数是(
)A.80° B.70° C.65° D.60°2.(2022·上海·七年级专题练习)如图所示,D,A,E在同一条直线上,BD⊥DE于D,CE⊥DE于E,且△ABD≌△CAE,AD=2cm,BD=4cm,求(1)DE的长;(2)∠BAC的度数.考点五用SSS证明三角形全等例题:(2022·河北·平泉市教育局教研室二模)如图,,点E在BC上,且,.(1)求证:;(2)判断AC和BD的位置关系,并说明理由.【变式训练】1.(2021·河南省实验中学七年级期中)如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,且满足,,,连接AF;(1)与相等吗?请说明理由.(2)若,,AF平分时,求的度数.2.(2022·山东济宁·八年级期末)如图,在四边形ABCD中,于点B,于点D,点E,F分别在AB,AD上,,.(1)若,,求四边形AECF的面积;(2)猜想∠DAB,∠ECF,∠DFC三者之间的数量关系,并证明你的猜想.考点六用SAS证明三角形全等例题:(2022·福建省福州第十九中学模拟预测)如图,点O是线段AB的中点,且.求证:.【变式训练】1.(2022·云南普洱·二模)如图,和分别在线段的两侧,点,在线段上,,,求证:.2.(2022·四川省南充市白塔中学八年级阶段练习)如图,点B、C、E、F共线,AB=DC,∠B=∠C,BF=CE.求证:△ABE≌△DCF.考点七用ASA证明三角形全等例题:(2022·上海·七年级专题练习)已知:如图,AB⊥BD,ED⊥BD,C是BD上的一点,AC⊥CE,AB=CD,求证:BC=DE.【变式训练】1.(2022·广西百色·二模)如图,在△ABC和△DCB中,∠A=∠D,AC和DB相交于点O,OA=OD.(1)AB=DC;(2)△ABC≌△DCB.2.(2022·贵州遵义·八年级期末)如图,已知,,.(1)求证:.(2)若,求的度数.考点八用AAS证明三角形全等例题:(2022·上海·七年级专题练习)如图,已知BE与CD相交于点O,且BO=CO,∠ADC=∠AEB,那么△BDO与△CEO全等吗?为什么?【变式训练】1.(2022·福建省福州第一中学模拟预测)如图,已知A,F,E,C在同一直线上,∥,∠ABE=∠CDF,AF=CE.求证:AB=CD.2.(2022·全国·九年级专题练习)如图,D是△ABC的边AB上一点,CF//AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.考点九用HL证明三角形全等例题:(2022·四川省南充市白塔中学八年级阶段练习)如图,AB=CD,AE⊥BC于E,DF⊥BC于F,且BF=CE.(1)求证AE=DF;(2)判定AB和CD的位置关系,并说明理由.【变式训练】1.(2022·安徽安庆·八年级期末)如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠CAB=54°,求∠CAO的度数.2.(2022·江西·永丰县恩江中学八年级阶段练习)如图,在△ABC中,BC=AB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度数.一、选择题1.(2022·河北石家庄·八年级期末)观察下面的6组图形,其中是全等图形的有()A.3组 B.4组 C.5组 D.6组2.(2022·辽宁大连·八年级期末)如图,△AOC≌△DOB,AO=3,则下列线段长度正确的是()A.AB=3 B.BO=3 C.DB=3 D.DO=33.(2022·吉林长春·八年级期末)如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL判定△ABC≌△DEF的是(
)A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF4.(2022·重庆长寿·八年级期末)如图,在四边形ABCD中,,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则四边形ABCD的周长为(
)A.24 B.26 C.27 D.285.(2022·湖北随州·八年级期末)如图,△ABC中,P为AB上一点,Q为BC延长线上一点,且,过点P作于点M,过点Q作交AC的延长线于点N,且,连接PQ交AC边于点D,则以下结论:①;②;③为等边三角形;④.其中正确的结论是(
)A.①②③ B.①②④ C.①③④ D.②③④二、填空题6.(2022·黑龙江佳木斯·八年级期末)如图,点在上,点E在上,,添加一个条件______,使(填一个即可).7.(2022·福建泉州·八年级期末)已知△ABC≌ΔA′B′C′,AB+AC=12,若ΔA′B′C′的周长为22,则B′C′的长为_____.8.(2021·江苏镇江·八年级期中)如图,若△ABC≌△DEB,点D在线段AB上,若DE=7,AC=5,则AD=____.9.(2022·福建福州·八年级期末)如图,已知∠CDE=90°,∠CAD=90°,BE⊥AD于B,且DC=DE,若BE=7,AB=4,则BD的长为_____.10.(2022·江西萍乡·七年级期末)如图,在长方形ABCD中,,,延长BC到点E,使,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC—CD—DA向终点A运动,设点P的运动时间为t(秒),当和全等时,t的值为________.三、解答题11.(2022·江苏·八年级)如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2(1)求角F的度数与DH的长;(2)求证:.12.(2022·湖北省直辖县级单位·八年级期末)如图,已知:AB=AC,BD=CD,E为AD上一点.(1)求证:△ABD≌△ACD;(2)若∠BED=50°,求∠CED的度数.13.(2022·山东东营·七年级期末)如图,已知∠A=90°,∠ADE=120°,BD平分∠ADE,AD=DE.(1)BAD与BED全等吗?请说明理由;(2)若DE=2,试求AC的长.14.(2022·辽宁辽阳·七年级期末)如图,在和中,,,,在同一直线上,且,.(1)请你添加一个条件:_________,使;(只添一个即可)(2)根据(1)中你所添加的条件,试说明的理由.15.(2022·黑龙江哈尔滨·八年级期末)如图,已知点E、C在线段BF上,BE=CF,AB∥DE,∠ACB=∠DFC,(1)求证:△ABC≌△DEF;(2)设AC与DE交于点G,当∠B=50°,∠F=70°时,求∠AGD的度数.16.(2021·河南洛阳·八年级期中)如图,在△ABC中,D是边BC上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:∠AEB=∠DEB;(2)若∠A=100°,∠C=50°,求∠AEB的度数.17.(2022·贵州铜仁·八年级期末)某校八年级数学兴趣小组的同学在研究三角形时,把两个大小不同的等腰直角三角板按如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车融资租赁协议
- 活动场地租赁协议
- 单亲家庭育儿支持协议书
- 水务行业水资源管理系统开发合同
- 绿色能源产业投资项目合同
- 农业保险智能服务与管理系统开发方案
- 数据加密传输服务合同
- 光伏发电站建设合作协议
- 虚拟现实培训系统开发合同
- 新一代农产品物流智能化管理平台搭建实践分享
- 《高低压配电室施工工艺标准》
- 2024年太阳能光伏组件高空清洗作业人员安全保障合同3篇
- 大学学业规划讲座
- 《国家课程建设》课件
- 【课件】Unit+5+Fun+Clubs+Section+B+1a-2b课件人教版(2024)七年级英语上册++
- 江苏省南通市海门区2023-2024学年三年级上学期期末语文试题
- 静脉输液治疗小组工作总结
- 总磷课件教学课件
- 2025年护理部工作计划
- DB35T 2153-2023 医疗机构检查检验结果互认共享数据传输及应用要求
- 二年级语文上册 课文2 口语交际 做手工教案 新人教版
评论
0/150
提交评论