


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相似三角形的性质及其应用【教学目标】1.能运用相似三角形的性质解决一些简单的实际问题。2.进一步检验数学的应用价值。【教学重难点】运用相似三角形的性质解决简单的实际问题。【教学过程】一、复习提问我们已经学习相似三角形的性质有哪些?1.相似三角形对应角相等。∵△A′B′C′∽△ABC∴∠A=∠A′,∠B=∠B′∠C=∠C′2.相似三角形对应边成比例。∵△ABC∽△ABC∴EQ\F(AB,A′B′)=EQ\F(BC,B′C′)=EQ\F(CA,C′A′)3.相似三角形的周长之比等于相似比;4.相似三角形的面积之比等于相似比的平方。5.相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比。思考:你能够将上面生活中的问题转化为数学问题吗?二、例题讲解1.校园里有一棵大铁树,要测量树的高度,你有什么方法?把一小镜子放在离树(AB)8米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.8m,观察者目高CD=1.6m。这时树高多少?你能解决这个问题吗?把长为2.40m的标杆CD直立在地面上,量出树的影长为2.80m,标杆的影长为1.47m。这时树高多少?你能解决这个问题吗?分别根据上述两种不同方法求出树高(精确到0.1m)请你自己写出求解过程,并与同伴探讨,还有其他测量树高的方法吗?2.如图,屋架跨度的一半OP=5m,高度OQ=2.25m。现要在屋顶上开一个天窗,天窗高度AC=1.20m,AB在水平位置。求AB的长度。(结果保留3个有效数字)AABCOPQ三、练一练1.课内练习步枪在瞄准时的示意图如图,从眼睛到准星的距离OE为80cm,步枪上准星宽度AB为2mm,目标的正面宽度CD为50cm,求眼睛到目标的距离OF。准星准星ABEEABOCDF2.反馈练习(1)某一时刻树的影长为8米,同一时刻身高为1.5米的人的影长为3米,则树高4米。AODBCAODBC长臂OB=10米,短臂端下降AC=0.6米,则长臂端上升BD=6米。思考题:1.如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x。分析:如图,要想求厚度x,根据条件可知,首先得求出内孔直径AB.而在图中可构造O出相似形,通过相似形的性质,从而O求出AB的长度。解:∵OA:OC=OB:OD=n且∠AOB=∠COD∴△AOB∽△COD∵OA:OC=AB:CD=n又∵CD=b∴AB=CD·n=nb∴x=EQ\F(a-AB,2)=EQ\F(a-nb,2)2.如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB.AC上,这个正方形零件的边长是多少?解:设正方形PQMN是符合要求的△ABC的高AD与PN相交于点E。设正方形PQMN的边长为x毫米。因为PN∥BC,所以△APN∽△ABC所以EQEQ\F(AE,AD)=EQ\F(PN,BC)因此EQ\F(80-x,80)=EQ\F(x,120)得x=48(毫米)。答:这个正方形零件的边长是48毫米。四、课堂小结1.相似三角形的应用主要有如下两个方面(1)测高(不能直接使用皮尺或刻度尺量的)(2)测距(不能直接测量的两点间的距离)2.测高的方法测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决。3.测距的方法测量不能到达两点间的距离,常构造相似三角形求解。4.解决实际问题时(如测高、测距),一般有以下步骤:①审题②构建图形③利用相似解决问题【作业布置】1.见作业本2.书本作业题3.课外活动设计题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024桂林理工大学辅导员招聘笔试真题
- 9.团体标准《茗冠茶-绿茶加工技术规程》意见反馈表
- 2025年TFT-LCD用偏光片合作协议书
- ABC分类法在食品安全检测中的高效管理与优化策略
- 2025年湖南大学岳麓书院学工助理招聘考试笔试试题【答案】
- 2025年嘉兴嘉睿人力招聘考试笔试试题【答案】
- 2025年事业单位招考综合基础知识全真模拟考试试题【答案】
- 2025年电火花成型机床项目发展计划
- 干部教育培训工作调研报告
- 消费者购物行为对在线时尚品牌的影响
- DL-T5017-2007水电水利工程压力钢管制造安装及验收规范
- 海上风电场选址与环境影响评估
- 市政工程资料表格填写范例样本
- 《陆上风电场工程概算定额》(NB-T 31010-2019)
- 《早期教育概论》课程标准
- 药物分析年终述职报告
- 农发行信贷业务考试题库题库附答案
- 2024普通高中物理课程标准解读
- 精神分裂症护理查房
- 建筑物联网工程综合实训 课件 第1-3章 物联网技术导论、物联网领域的关键技术、智能建造工程场景中的物联网
- 初中数学中心对称图形训练50题(含参考答案)
评论
0/150
提交评论