版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BISWorkingPapersNo1207
TheriseofgenerativeAI:modellingexposure,
substitution,andinequalityeffectsontheUSlabour
market
byRaphaelAuer,DavidKöpfer,JosefŠvéda
MonetaryandEconomicDepartment
September2024
JELclassification:E24,E51,G21,G28,J23,J24,M48,O30,O33
Keywords:Labourmarket,Artificialintelligence,Employment,Inequality,Automation,ChatGPT,GPT,LLM,Wage,Technology
BISWorkingPapersarewrittenbymembersoftheMonetaryandEconomicDepartmentoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.
ThispublicationisavailableontheBISwebsite
()
.
©BankforInternationalSettlements2024.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.
ISSN1020-0959(print)ISSN1682-7678(online)
1
TheriseofgenerativeAI:modellingexposure,substitution,and
inequalityeffectsontheUSlabourmarket*
RaphaelAuertDavidK¨opfer‡Josefv´eda§
August21,2024
Abstract
Howexposedisthelabourmarkettoever-advancingAIcapabilities,towhatextentdoesthissubstitutehumanlabour,andhowwillitaffectinequality?Weaddressthesequestionsinasimulationof711USoccupationsclassifiedbytheimportanceandlevelofcognitiveskills.WebaseoursimulationsonthenotionthatAIcanonlyperformskillsthatarewithinitscapabilitiesandinvolvecomputerinteraction.AtlowAIcapabilities,7%ofskillsareexposedtoAIuniformlyacrossthewagespectrum.AtmoderateandhighAIcapabilities,17%and36%ofskillsareexposedonaverage,andupto45%inthehighestwagequartile.Examiningcomplementaryversussubstitution,wemodeltheimpactonsideversuscoreoccupationalskills.Forexample,AIcapableofbookkeepinghelpsdoctorswithadministrativework,freeinguptimeformedicalexaminations,butrisksthejobsofbookkeepers.WefindthatlowAIcapabilitiescomplementallworkers,assideskillsaresimplerthancoreskills.However,asAIcapabilitiesadvance,coreskillsinlower-wagejobsbecomeexposed,threateningsubstitutionandincreasedinequality.IncontrasttotheintuitivenotionthattheriseofAImayharmwhite-collarworkers,wefindthatthoseremainsafelongerastheircoreskillsarehardtoautomate.
JELcodes:E24,E51,G21,G28,J23,J24,M48,O30,O33
Keywords:Labourmarket,Artificialintelligence,Employment,Inequality,Automation,ChatGPT,GPT,LLM,Wage,Technology
*WethankRyanBanerjee,SebastianDoerr,FiorellaDeFiore,FernandoPerez-Cruz,AndrasValko,andseminarparticipantsattheBISforcommentsandsuggestions.WeacknowledgetheuseofGPT4foreditingand
asitanel.lti,erlcieoftheBIS.
‡BankforInternationalSettlements,david.koepfer@§BankforInternationalSettlements,josef.sveda@
2
1Introduction
HowwilltheadvancementofgenerativeAIcomplementandsubstitutedifferentkindsofhumanlabour?RecentbreakthroughshaveenabledgenerativeAItomimichumancognitiveabilitiesinmanyfields,includingin“whitecollar”professionssuchaslaw,medicine,orscience.Ongoingadvancesandintegrationofthetechnologyintoday-to-dayapplicationsandworkflowsraiseurgentpolicyquestions.
UnderstandinghowthepotentialevolutionofAIwillcomplementorsubstitutehumanskillsisessentialforshapingpoliciestoensureequitablegrowthandemploymentstability.Theliter-
aturehasfocusedontheoccupation-levelimpactofcurrentAImodels,1
experimentalevidence
ofproductivityimpacts(Noy&Zhang,
2023;
Brynjolfssonetal.,
2023;
Pengetal.,
2023),and
thepotentialforcomplementarityandsubstitutioneffectsofAItechnologyataparticularstate
ofAIdevelopment(Pizzinellietal.,
2023;
Acemoglu&Restrepo,
2019,
2018c,a)
.Exceptforcertaintypesoffreelancers(seee.g.
Webb
2020),thebroaderimpactofAIcapabilitiesonthe
labourmarketyetremainstobedemonstrated.
Inthispaper,wetakeaforward-lookingapproach:weaskthequestionof“whatif”and
examinehowanAIofahypotheticallevelofcapabilitieswastoexpose2
differentoccupations.Toshedthefirstlightonthefutureimpact,webuildaparsimoniousbottom-upquantificationwithaspecialfocusonincomedistribution.
Ouranalysisproceedsintwosteps.Inthefirststep,webuildon
Eloundouetal.
(2023);
Feltenetal.
(2021);
Gmyreketal.
(2023);
Pizzinellietal.
(2023);
Acemoglu
(2024)andmodel
theexposuretothetechnologyasthecapabilitiesofAIincrease
.3
Inthesecondstep,weexaminehowthesedevelopmentscouldcomplementorsubstitutehumanlabourthroughthelensoftheirimpactoncoreandsideskills.
Inthefirststep,wearguethatthenear-termimpactofAIislimiteda)tocomputer-relatedinteractionsandb)bythedifficultyoftheskillsthatAIcansubstitutefor.Inthis,weonlyquantifytheimpactonskillsinvolvinginteractionwithacomputer.We,hence,donottakeintoaccounttheimpactofAIonroboticsthatmaysubstituteforphysicalworkorevensocialinteractions
.4
OurfirstdeparturefromtheliteratureistoemployanunderusedpartoftheO*NETdatabasethatclassifiesskillsbytheirdifficulty.Intuitively,anAIofacertaincapabilitylevelcanonlyperformtasksuptoacorrespondingskilllevel.AsthecapabilitiesofAIadvance,an
1Seei.e
.Webb
(2020);
Feltenetal.
(2021);
Tolanetal.
(2021);
Gmyreketal.
(2023);
Yang
(2022)
2Throughoutthepaper,weusetheterms“expose”and“exposure”inaneutralmanner,toimplythatsomepartsofaskill,task,oroccupationcouldbeenhanced,performed,orotherwisebeaffectedbyanAI.
3Similartotheseapproaches,wetakeapartialequilibriumperspectiveanddonottakeintoaccountthe
interplaybetweenskills,relativewages,humancapitalformationanddirectedtechnologicalchange(Acemoglu
&Restrepo,
2018c)
.
4Thisisinlinewith
Acemoglu
(2024),whoarguesthat“AIisnowhereclosetobeingabletoperformmost
manualorsocialtasks”,andwethusassumethatitcanonlyperformcomputerinteractions.
3
increasingshareofcognitiveskillswillhencebeexposedtothetechnology.5
WenestthisnotionofAIcapabilityandskilldifficultyinaquantitativesimulationof711USoccupationsfromtheO*NETdatabaseclassifiedbytheimportanceandtherequiredlevelofcognitiveskillsthatinvolvecomputerinteractions.ThemodelpredictsthatanAIcapableofsubstitutingforsimplecognitivetasks–suchastheminimalcommunicationskillsrequiredforatruckdriver–willexposearound7%ofallskills.AtlowlevelsofAIcapability,thiseffectholdsuniformlyacrosstheentirewagespectrum,butforheterogeneousreasons.Forlow-incomeworkers,asubstantialshareofcognitivecomputerskillsisexposed,buttheoverallshareoftimespentoncomputerinteractionislow.Forhigh-incomeworkers,onlyasmallshareofcognitivecomputerskillsisexposedbecauseofthelargerskillrequirement.However,theshareoftimespentusingsuchskillsishigher
.6
AsAIcapabilitiesincrease,weobserveaprofounddifferenceinoccupationalexposure:upto45%intheupperquartileofthewagedistributionareexposed,whereastheexposureofthelowestquartileisaround26%.
Whatdoesthismeanfortheincomedistribution?Wenotethatinlinewiththeliterature,“exposure”hasaneutralmeaninginthatsomepartsofaskill,task,orjobcouldbeperformedbyanAI.
Thismayleadtosubstitutionbutcouldalsocomplementviaincreasedproductivity.7
Toshedlightontheseissues,intheseconddeparturefromtheliteratureandstepofoursimulations,weexaminetheextenttowhichAImightcomplementorsubstitutehumanlabour.Wefocusonthedifferentialimpactoncoreversussideoccupationalskills,arguingthatAIwouldtendtocomplementoccupationswherevertheauxiliary(side)skillsnecessaryfortheprofessionarewithinitscapabilities.Forexample,ifAIcanorganisemeetings,billing,orbookkeepingforlawyers,medicaldoctors,orscientists,thisfreesuptimethatcanbespentoncoreactivitiesandthusincreasesproductivity.However,aprofessionmaybeatriskifthecoreactivityitselfcanbeperformedbytheAI.
ThisexercisesuggeststhatAImayinitiallycomplementallprofessions,assideskillsare
5Wetakenopositiononhowfasttheevolutionofthetechnologywillmaterialise.SomehavearguedthatAImaysoonhavedramaticimpactsonthelabourmarket(ie
Korinek&Juelfs
(2022))
.OthersarguethatfutureadvancementofAImaymaterialisemuchslowerthanexpected.Forexample,
Acemoglu
(2024)arguesthat
earlyevidenceisfromeasy-to-learntaskswithclearoutcomes(thatAIcanoptimisefor),whereasmoreprofoundproductivityimpactsinmoresubtlecontextsmaymaterialisemuchslower.
Perez-Cruz&Shin
(2024)arguethat
currentLLMsarelimitedintheirunderstandingofhumaninteractionandhigher-orderbeliefs.
6Fortheseexamples,“simplecognitivetasks”correspondtothoserequiringaskilllevelof2.0intheO*NETdatabase,forexample,theminimumsocialperceptivenessskillsrequiredforpiledriversortheminimumspeakingskillsrequiredforindustrialtruckoperators.“Mediumcognitivetasks”correspondtothoserequiringaskilllevelof3.0,forexample,problem-solvingskillsofmedicalappliancetechniciansortheoperationsmonitoringskillsofregisterednurses.“Highcognitivetasks”correspondtothoserequiringaskilllevelof4.0,forexample,thepersuasionskillsofpsychiatristsortheactivelisteningskillsofairtrafficcontrollers.
7Svanbergetal.
(2024)furthernotethat“exposure”doesnotmeanautomation:theysurveyworkerswith
“end-use”taskstogetasenseoftherequirementsforautomation,andsecond,theymodelthecostofamodelcapableofmeetingtherequirements.Focusingontheautomatabilityofvision,findthatonly23%ofoccupationsthatare“exposed”inthesenseof
Eloundouetal.
(2023);
Feltenetal.
(2021)couldtodaybeautomatedeco
-nomically.Wenotethatourmeasureofexposureismorenuancedthantheonein
Eloundouetal.
(2023);
Felten
etal.
(2021)aswerestricttheimpacttoskillsinvolvingcomputerinteractionandnotonlymodelwhetheraskill
inprinciplecouldbeautomatedbutalsowhetherthecapabilityleveloftheAIissufficientforsuchautomation.
4
generallylessdifficultthancoreskills.Forexample,anAIonlycapableofperformingsimplecognitivetaskshasnegligibleexposuretocoreskills,whereasit,onaverage,exposesaround12%ofsideskills.However,alreadyformoderateAIcapabilities,thereisdivergenceacrossthewagespectrum,withthecorecognitiveskillsofthelow-wageworkersbecomingroughlyasexposedtoAIastheirsideskills.Incontrast,theupperquartileofthewagedistributionstillseesnegligibleexposureofcoreskills(5%),whereassideskillsareexposedsubstantially(27%).
IfAIcapabilitiesarehigh,around25%ofbothsideandcoreskillsofthelowestquartileofthewagedistributionareexposed.Incontrast,only20%ofthecorebutastaggering62%ofthesideskillsofthehighestquartileoftheincomedistributionbecomeexposed.
Onbalance,ourmodellingoftheimpactonsideandcoreskillshencereversesthenotionthat
generativeAImightdecreaseinequalityinthelabourmarket(Noy&Zhang,
2023;
Brynjolfsson
etal.,
2023)
.Despitebeingatechnologythatisexposingwhite-collarjobsmoreintensively,thiseffectisfocusedonthesideskillsoftheirprofessions,whilethecoreskillsarenotinreach
.8
Incontrast,acapableAIwillalsoexposethecoreskillsoflower-incomeworkers,thusthreateningsubstitutionandwideninginequality.
Thebalanceofthispaperisasfollows:werelateourapproachtotheliteratureinSection
Section2.
Next,
Section3
presentsthemethodologydescribingtheevolutionaryimpactofever-improvingAIonoccupations.ItalsoservesasanAIexposuredependentonAI’scapabilities.Thereafter,wesplittheAIexposurebasedoncoreandsideskills
Section4
thatarethenusedtoidentifycomplementarityandsubstitutionaleffectsforindividualoccupations.
Section5
presentsadditionalrobustnessanalysis,while
Section6
concludes.
2Literaturereview
Historically,technologicaladvancementshavebeenmetwithbothoptimismandconcernre-
gardingtheirimplicationsforthelabourmarket(Bessen,
2016)
.TheadventofAIandmachinelearningtechnologies,ingeneral,hasintensifiedthesedebates,withresearchersseekingtoun-derstandhowthesenewtoolscanreshapethelabourmarketandhowtheimpactcandiffer
fromprevioustechnologicaladvancementsinrobotisationorcomputerisation(Autor,
2015)
.
SeveralrecentstudieshavedirectlyaddressedthepotentialofthelatestadvancementsinAItosignificantlyimpactthecurrentstructureofthelabourmarket.
Brynjolfssonetal.
(2018)
arguethatmostoccupationsintheUSincludeatleastsometasksthataresuitableformachinelearningapplications,and
Eloundouetal.
(2023)suggeststhat80%oftheworkforcecouldbe
affectedbyGenerativePredictiveTransformers(GPTs).Whiletheseestimatesarestaggering,
Arntzetal.
(2016)arguethattheactualvulnerabilityofjobstoautomationislowerwhen
consideringthenuancedskillswithinoccupations.Nonetheless,theproliferationofthelatestLLMsseemstobenon-negligent;
Eloundouetal.
(2023)furtherfind19%ofUSworkersinthe
8Ofcourse,oncethecapabilityoftheAIbecomesextremelyhighsuchthatallskillsarewithinreach,thiseffectabates,andallcognitiveworkersareindangerofreplacement.
5
USmayseeatleasthalfoftheirskillsimpactedand
Hatziusetal.
(2023)finds25%ofcurrent
workskillsinUSautomatable.
CurrentAIcapabilities,insomeinstances,fallshortofprofoundreasoningskills(Perez-Cruz
&Shin,
2024)
.However,animportantissueregardshowthefutureevolutionofAIcapabilitiescanenhancelabourproductivityorcrowdoutworkers.RecentexperimentswiththelatestgenerationofAIshowthatitcanhaveapositiveeffectinspecificoccupationswhilereducingdifferencesamongworkerswithvaryingexperiencelevels.
Noy&Zhang
(2023)demonstrated
thattheuseofChatGPTsignificantlyincreasesaverageproductivitymeasuredbytimespentontasksandreducesdifferencesbetweenhigh-andlow-skilledworkers.
Brynjolfssonetal.
(2023)studiedtheintroductionofgenAIassistanttothecustomersupportagentsandfounda
significantlyhighernumberofcompletedtasksthatweremorepronouncedfornoviceandlow-skilledworkers.
Pengetal.
(2023)suggestscoderswithaccesstogenAIarecapableofcompleting
coding-orientedtasksupto55%faster.AItoolscanalsoserveasthetooltodiscoverpotential
improvementsinbusinesssystems(Cockburnetal.,
2018;
Chengetal.,
2022)
.
However,anincreaseinlabourproductivitymeansthatlesshumancapitalisneededto
maintainthesameoutput,whichcouldleadtolayoffsorwagereductions(Acemoglu&Restrepo,
2020)
.Inthiscontext,
Frey&Osborne
(2017)predictedthatupto47%ofUSemploymentis
athighriskofcomputerisation.
Arntzetal.
(2016)howeverusesadifferentmethodologyand
estimatesanimpactofonly9%.Gmyreketal.
(2023)findthatgenAIcouldautomate5.1%of
totalemploymentinhigh-incomecountries,whereaslow-incomecountriesarenotsosusceptible.Thepotentialforaugmentationissimilarlydistributedacrosscountriesrelativetotheirincomelevels,althoughthepotentialtoaugmentismuchlarger(aroundfourtofivetimes).
Noy
&Zhang
(2023)claimthatChatGPTmostlysubstitutesforworkereffortratherthanpurely
complementingworkerskills.
Yang
(2022)alsoshowsthatAIcanpositivelyaffectproductivity
andemploymentbutadverselyaffectstheemploymentoflessknowledgeableworkers.Some
studiesadditionallydebatetheeffectsrelativetogender(Eloundouetal.,
2023;
Webb,
2020;
Gmyreketal.,
2023;
Aldasoroetal.,
2024)
.
Historicalexperiencewithinnovationshowsthatinthelong-term,thedisplacementcanbe
offsetbyanincreaseintherangeofgoodsandservicesoffered,see(Autor,
2015;
Acemoglu
&Restrepo,
2019)
.Forexample,
Bessen
(2016)showsUSlabourdemandhasincreasedfaster
incomputerisedoccupationssince1980,althoughthecomputerisationledtosubstitutionforotheroccupations,shiftingemploymentandrequiringnewskills.
Acemogluetal.
(2022)find
increasingdemandinAI-exposedoccupationsintheUSsince2015.AutomatisationinJapan
andtheUSgeneratedcostsavings,allowinglargeroutputineconomy(Adachietal.,
2024;
Dekle,
2020;
Acemoglu&Restrepo,
2020)thatoutweighedthedisplacementeffectsofhuman
labour.
Yang
(2022)findsthatAItechnologyispositivelyassociatedwithproductivityand
employmentinTaiwan’selectronicsindustryforthe2002–2018period.
Acemoglu&Restrepo
(2019),
Acemoglu&Restrepo
(2018a)and
Acemoglu&Restrepo
(2018c)thenfocusdirectlyon
thedynamicsofdisplacementandreinstatementoflabourduetoautomation.Basedondata
6
fromtheUSsinceWorldWarII,
Acemoglu&Restrepo
(2019)claimthatdisplacementeffects
occurintuitively,buttheyarecounterbalancedbythecreationofnewtasksinwhichlabourhasacomparativeadvantage.Thesethenchangethetaskcontentofproductioninfavouroflabourbecauseofareinstatementeffectfollowedbyariseinthelabourshareandlabourdemand.
Acemoglu&Restrepo
(2019)pointoutthatthesuccessofreinstatementisnotautomatic
.Itratherdependsonadditionalvariablessuchasthesupplyofnewskills,demographics,orlabourmarketinstitutions
.9
Althoughpreviousinnovationsinautomatisationandcomputerisation,onaverage,broughteconomicgrowth,theystillreshapedthelabourmarketandintroducednewchallengesinre-gionallabourmarketstructuresthataffectedlabourdistributionacrosstheskilldistributionofmarkets.
Autor
(2019)documentstheseeffectsusingUSdatashowingthatautomation(to
-getherwithinternationaltrade)ledtotheeliminationofthebulkofnon-collegeoccupations,furtherleadingtodisproportionatepolarisationofurbanlabourmarkets.
Acemoglu&Restrepo
(2022)documentthatbetween50%and70%ofchangesintheUSwagestructureoverthelast
fourdecadesareaccountedforbyworkersspecialisedinroutinetasksinindustriesexperiencingrapidautomation.
Acemoglu&Restrepo
(2020)showindustrialrobotadoptionintheUnited
Stateswasnegativelycorrelatedwithemploymentandwages.Theseexamplespinpointtheimportanceofunderstandingthepotentialeffectsoftechnologicaladvancementstonavigateasmoothtransitiontowardsanewstructureofthelabourmarket.
ThequestionremainshowmuchthenewwaveofautomationwithAIiscomparabletoprevi-oustechnologicaladvancements.Previously,automationexposedpredominantlymanuallabourthroughtheinventionofmachinesandrobots.Thetransitionprocesstorobot-drivenproduc-
tion,therefore,affectedatitsfirststageratherlower-skilledlabour(Acemoglu&Restrepo,
2018b)
.EvolvingAIchallenges,however,cognitivetasksandskillsandcreatesapotentialtoaffectdifferentoccupationsbyeithercomplementingorsubstitutingthem.Earlierworkby
Autor&Dorn
(2013)suggeststhatlow-wageoccupationsfacedhighersubstitutiondueto
computerisation.Incontrast,high-wageoccupationswerecomplementedbytechnology.
Webb
(2020)thenfocusesonthenewerinnovationinAIandstatesitisdirectedathigh-skilledtasks,
effectivelyaffectingthehigher-wagequantiles.Asimilarconclusionisreachedby
Eloundouetal.
(2023)and
Pizzinellietal.
(2023)
.
Webb
(2020)arguesthattheimpactofAIisdifferentfrom
theeffectsofsoftwareinnovation,whichexposedmid-wageoccupations(inlinewith
Michaels
etal.
(2014))
.
Pizzinellietal.
(2023)emphasisehighcomplementarityintheuppertailofthe
earningsdistributionbyAI,leadingtoaproductivityboostinsteadofjobdisplacements.TheeffectsofAIalsodiffergeographically.
Pizzinellietal.
(2023);
Gmyreketal.
(2023);
Albanesi
etal.
(2023)showthatmoredevelopedcountriesaremoreexposedtoAIastheirlabourmarkets
aremoreorientedtocognitivetasks.However,asAIsignificantlyprogresses,researchalsoneeds
toaccountfortheevolutionoftechnologytofullyunderstanditspotentialeffects.Examining
9Inasimilarvein,
Aldasoroetal.
(2024)showinageneralequilibriummodelthattheoutputeffectsofAI
mayprimarilyariseviatheindirectimpactondemandandassociatedchangesinrelativepricesratherthanviathedirectinitialproductivityboostfromAIadoption.
7
theimpactofdevelopingAIthroughthelensofwagedistributionseemstobeadvantageousto
formulatetargetedpolicyresponses(Furman&Seamans,
2019)
.AstheadvancementsinAItechnologyprogress,theirinteractionmightchangerapidly.
3MeasuringAIexposure:dataandmethodology
PredictingtheimpactofAIonthelabourmarketischallenging,astheintegrationofthetechnologyintoreal-lifeapplicationsisstillinitsinfancy,andonlysomesyntheticbenchmarksonthepotentialqualityandefficiencyimprovementsoncertainaspectsofworkareavailable(seei.e.
Tolanetal.
(2021);
Pengetal.
(2023);
Noy&Zhang
(2023))
.Particularly,therapidlyevolvingcapabilitiesofAIareamajorsourceofuncertainty.Inthefaceoftheseuncertainties,weconstructaparsimoniousbottom-upmodelcentredonan“AIcapability”parameter,whichallowsustosimulatetheeffectsofevolvingAI.Themodelisbuiltontheskillandoccupationlevelandlateraggregatedtotheindustryorwage-quantilelevel.
Inthissection,weshowhowweconstructtheAIShareAutomatability(AISA)IndexthatdependsonthesophisticationoftheAI(definedas“AIcapability”above).Thisindexrestsontwomainassumptions:
1.Intheshorttomediumterm,automationwillaffectoccupationalactivitieswithcomputerinteractionasopposedtosocialinteractionsorphysicallabour.
2.Theskillsrequiredforperformingtheoccupationsareheterogeneousintheirdifficultylevel.Foraskilltobeimpactedinacertainoccupation,itsdifficultylevelneedstobewithinthecapabilitiesoftheAI.
WeutilisedatafromO*NETversion27.2andthe2022OccupationalEmploymentandWageStatistics(OEWS)SurveyfromtheUSBureauofLaborStatistics.Thesedatasetsdetailaround800differentoccupations(ofwhichwecanuse711afterjoiningacrosstheskillstablesandemploymentstatistics)across22industries,providingaverageincome,employmentnumbers,andratingsforupto35cognitiveskillsforeachoccupationintermsofrequiredskilllevel(1-6)andimportance(1-5).
Furthermore,thedataincludesdetailedtaskdescriptions10
foreachoccupation(onaverage,wehave24taskdescriptionsforeachofthe711occupations).
Inthedescriptionofourmodel,wewillusesubscriptstodenotethedifferentlevelsofaggregation:thelowestlevelsfortheskill,ofortheoccupationandthehighestaggregationlevelsifortheindustryorwforthewagequantile.TheskilllevelLo,sisdistinctforagivenoccupationoandskills.Forinstance,theoccupationofBiophysicistsrequiresalevelof4.75intheskillmathematics,whiletheimportanceofthisskillIo,sis3.88.
10/dictionary/21.0/text/task_statements.html
(releasenumber21.0)
8
3.1OnlycomputerinteractionisautomatablewithAI
Inthispaper,weonlyexaminetheimpactofAIonautomatingtasksthatrequireskillsinvolvingcomputerinteraction.Jobsperformedoncomputersare,intheshortandmediumrun,muchmorelikelytoincorporateAIapplicationscomparedtothoseinvolvingphysicallabour.Weacknowledgethatalsophysicallabourmay,inthefuture,bepronetoautomationthroughimprovedmachinesandrobotics.However,modellingtheimpactofsuchdevelopmentsisoutofthescopeoftheanalysisathand.Similarly,weexpectsocialinteractiontorequirehigherdegreesofsocialacceptancebeforewidespreadautomationmaterialises.Certainly,cost-effectivenessandimprovedsocialskillsoftheAIwillspeeduptheprocess,yet,asforphysicallabour,weexpectlongertimescales.
Weconstructameasureoftheshareofthetimespentoncomputerinteractionsbasedonabout19,000detailedtaskdescriptionsavailableintheO*NETdatabase.Basedonthede-scriptionsofeachoccupation,weinstructedGPT-4toestimatethetimespentwithi)computerinteraction,ii)socialinteraction,andiii)physicallabour.Theexactpromptisshowninthe
BoxA1,andoneexampleoftaskdescriptionisprovidedtotheChatGPT-4in
TableA1.
Notethatcomputerinteractionrepresentsworkingonacomputerthatcommonlydoesnotincludecommunicationviae-meetingsorothersimilarsocialinteraction.
Ingeneral,ChatGPT-4provesveryhighcomparabilitywithconventionalhuman-basedpro-ceduresforcategorisationpurposes.
Eloundouetal.
(2023)usesbothapproaches(human
-andGPT4-based)todirectlyidentifyoccupationalAIexposure,findingaveryhighcorrelationbe-tweenhumanassessmentsandGPT4-basedself-assessments
.11
Gmyreketal.
(2023)follows
theirapproachemp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园园长个人工作计划
- 中学生自我评价15篇
- 爱岗敬业演讲稿范文集锦6篇
- 大一新生自我鉴定15篇
- 学期班务工作计划
- 初中生新学期开学典礼演讲稿合集6篇
- 大学课前三分钟演讲稿(合集15篇)
- 《广告经典案例》课件
- 幼儿园大班老师的综合教育笔记合集6篇
- 金钱的诗句李白
- 工程分包管理制度
- GB/T 9452-2023热处理炉有效加热区测定方法
- 肺炎支原体肺炎诊治专家共识
- 药物化学(第七版)(全套课件1364P)
- 中国近现代史人物陈独秀
- 酒店业轻资产运营模式案例研究
- 建筑师《建筑工程经济》习题(E)
- 《卓有成效的管理者》读书分享
- 优秀管理者评选方案
- 广州中医药大学2021学年第一学期19级护理学专业《灾难护理学》期末考试试题
- 全过程工程造价跟踪审计服务方案
评论
0/150
提交评论