2025届豫东、豫北十所名校高考考前提分数学仿真卷含解析_第1页
2025届豫东、豫北十所名校高考考前提分数学仿真卷含解析_第2页
2025届豫东、豫北十所名校高考考前提分数学仿真卷含解析_第3页
2025届豫东、豫北十所名校高考考前提分数学仿真卷含解析_第4页
2025届豫东、豫北十所名校高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届豫东、豫北十所名校高考考前提分数学仿真卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知非零向量、,若且,则向量在向量方向上的投影为()A. B. C. D.2.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A. B.C. D.3.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}4.在中,角所对的边分别为,已知,则()A.或 B. C. D.或5.已知平行于轴的直线分别交曲线于两点,则的最小值为()A. B. C. D.6.已知集合,,则集合子集的个数为()A. B. C. D.7.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)8.已知复数z满足,则z的虚部为()A. B.i C.–1 D.19.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是()A.甲的数据分析素养优于乙 B.乙的数据分析素养优于数学建模素养C.甲的六大素养整体水平优于乙 D.甲的六大素养中数学运算最强10.复数的虚部是()A. B. C. D.11.若点是角的终边上一点,则()A. B. C. D.12.函数在上的图象大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在区间内有且仅有两个零点,则实数的取值范围是_____.14.设为椭圆在第一象限上的点,则的最小值为________.15.已知数列是各项均为正数的等比数列,若,则的最小值为________.16.从4名男生和3名女生中选出4名去参加一项活动,要求男生中的甲和乙不能同时参加,女生中的丙和丁至少有一名参加,则不同的选法种数为______.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.18.(12分)如图,D是在△ABC边AC上的一点,△BCD面积是△ABD面积的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求边AC的长.19.(12分)如图,在三棱锥中,,,侧面为等边三角形,侧棱.(1)求证:平面平面;(2)求三棱锥外接球的体积.20.(12分)如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.21.(12分)已知分别是椭圆的左、右焦点,直线与交于两点,,且.(1)求的方程;(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值.22.(10分)健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:现随机抽取了100为会员统计它们的消费次数,得到数据如下:假设该项目的成本为每次30元,根据给出的数据回答下列问题:(1)估计1位会员至少消费两次的概率(2)某会员消费4次,求这4次消费获得的平均利润;(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解.【详解】,由得,整理得,,解得,因此,向量在向量方向上的投影为.故选:D.【点睛】本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题.2、B【解析】

由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,①.因为,①式两边同除以,得.所以方程有三个不等的正实根.记,,则上述方程转化为.即,所以或.因为,当时,,所以在,上单调递增,且时,.当时,,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.3、A【解析】

解出集合A和B即可求得两个集合的并集.【详解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故选:A.【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.4、D【解析】

根据正弦定理得到,化简得到答案.【详解】由,得,∴,∴或,∴或.故选:【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.5、A【解析】

设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.【详解】解:设直线为,则,,而满足,那么设,则,函数在上单调递减,在上单调递增,所以故选:.【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.6、B【解析】

首先求出,再根据含有个元素的集合有个子集,计算可得.【详解】解:,,,子集的个数为.故选:.【点睛】考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.7、C【解析】

利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2)与终边相同的角=+其中.8、C【解析】

利用复数的四则运算可得,即可得答案.【详解】∵,∴,∴,∴复数的虚部为.故选:C.【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.9、D【解析】

根据所给的雷达图逐个选项分析即可.【详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.10、C【解析】因为,所以的虚部是,故选C.11、A【解析】

根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、A【解析】

首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】解:依题意,,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.14、【解析】

利用椭圆的参数方程,将所求代数式的最值问题转化为求三角函数最值问题,利用两角和的正弦公式和三角函数的性质,以及求导数、单调性和极值,即可得到所求最小值.【详解】解:设点,,其中,,由,,,可设,导数为,由,可得,可得或,由,,可得,即,可得,由可得函数递减;由,可得函数递增,可得时,函数取得最小值,且为,则的最小值为1.故答案为:1.【点睛】本题考查椭圆参数方程的应用,利用三角函数的恒等变换和导数法求函数最值的方法,考查化简变形能力和运算能力,属于难题.15、40【解析】

设等比数列的公比为,根据,可得,因为,根据均值不等式,即可求得答案.【详解】设等比数列的公比为,,,等比数列的各项为正数,,,当且仅当,即时,取得最小值.故答案为:.【点睛】本题主要考查了求数列值的最值问题,解题关键是掌握等比数列通项公式和灵活使用均值不等式,考查了分析能力和计算能力,属于中档题.16、1【解析】

由排列组合及分类讨论思想分别讨论:①设甲参加,乙不参加,②设乙参加,甲不参加,③设甲,乙都不参加,可得不同的选法种数为9+9+5=1,得解.【详解】①设甲参加,乙不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为9,②设乙参加,甲不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为9,③设甲,乙都不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为5,综合①②③得:不同的选法种数为9+9+5=1,故答案为:1.【点睛】本题考查了排列组合及分类讨论思想,准确分类及计算是关键,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)k1+k2为定值0,见解析【解析】

(1)利用已知条件直接求解,得到椭圆的方程;(2)设直线在轴上的截距为,推出直线方程,然后将直线与椭圆联立,设,利用韦达定理求出,然后化简求解即可.【详解】(1)由椭圆过点(0,),则,又a+b=3,所以,故椭圆的方程为;(2),证明如下:设直线在轴上的截距为,所以直线的方程为:,由得:,由得,设,则,所以,又,所以,故.【点睛】本题主要考查了椭圆的标准方程的求解,直线与椭圆的位置关系的综合应用,考查了方程的思想,转化与化归的思想,考查了学生的运算求解能力.18、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)利用三角形面积公式以及并结合正弦定理,可得结果.(Ⅱ)根据,可得,然后使用余弦定理,可得结果.【详解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以边.【点睛】本题考查三角形面积公式,正弦定理以及余弦定理的应用,关键在于识记公式,属中档题.19、(1)见解析;(2).【解析】

(1)设中点为,连接、,利用等腰三角形三线合一的性质得出,利用勾股定理得出,由线面垂直的判定定理可证得平面,再利用面面垂直的判定定理可得出平面平面;(2)先确定三棱锥的外接球球心的位置,利用三角形相似求出外接球的半径,再由球体的体积公式可求得结果.【详解】(1)设中点为,连接、,因为,所以.又,所以,又由已知,,则,所以,.又为正三角形,且,所以,因为,所以,,,平面,又平面,平面平面;(2)由于是底面直角三角形的斜边的中点,所以点是的外心,由(1)知平面,所以三棱锥的外接球的球心在上.在中,的垂直平分线与的交点即为球心,记的中点为点,则.由与相似可得,所以.所以三棱锥外接球的体积为.【点睛】本题考查面面垂直的证明,同时也考查了三棱锥外接球体积的计算,找出外接球球心的位置是解答的关键,考查推理能力与计算能力,属于中等题.20、(1)见解析(2)见解析【解析】

(1)连结OE,证明VA∥OE得到答案.(2)证明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到证明.【详解】(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,又因为E是棱VC的中点,所以VA∥OE,又因为OE⊂平面BDE,VA⊄平面BDE,所以VA∥平面BDE;(2)因为VO⊥平面ABCD,又BD⊂平面ABCD,所以VO⊥BD,因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC⊂平面VAC,所以BD⊥平面VAC.又因为BD⊂平面BDE,所以平面VAC⊥平面BDE.【点睛】本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.21、(1)(2)【解析】

(1)不妨设,,计算得到,根据面积得到,计算得到答案.(2)设,,,联立方程利用韦达定理得到,,代入化简计算得到答案.【详解】(1)由题意不妨设,,则,.∵,∴,∴.又,∴,∴,,故的方程为.(2)设,,,则.∵,∴,设直线的方程为,联立整理得.∵在上,∴,∴上式可化为.∴,,,∴,,∴.∴.【点睛】本题考查了椭圆方程,定值问题,意在考查学生的计算能力和综合应用能力.22、(1)(2)22.5(3)见解析,【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论