版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省滨海县2025届高三下学期联合考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A. B. C. D.2.函数的图象大致是()A. B.C. D.3.设,命题“存在,使方程有实根”的否定是()A.任意,使方程无实根B.任意,使方程有实根C.存在,使方程无实根D.存在,使方程有实根4.在三棱锥中,,,则三棱锥外接球的表面积是()A. B. C. D.5.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.6.在中,点D是线段BC上任意一点,,,则()A. B.-2 C. D.27.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8 B.9 C.10 D.118.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.140 D.1209.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且10.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A. B. C. D.11.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交12.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离二、填空题:本题共4小题,每小题5分,共20分。13.已知各项均为正数的等比数列的前项积为,,(且),则__________.14.在中,内角所对的边分别是.若,,则__,面积的最大值为___.15.边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则______.16.已知复数满足(为虚数单位),则复数的实部为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;(2)若,求与平面所成角的正弦值.18.(12分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.19.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,求的面积的值(或最大值).已知的内角,,所对的边分别为,,,三边,,与面积满足关系式:,且,求的面积的值(或最大值).20.(12分)已知均为正实数,函数的最小值为.证明:(1);(2).21.(12分)在平面直角坐标系中,直线的参数方程为(为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)若点在直线上,求直线的极坐标方程;(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.22.(10分)如图,在正三棱柱中,,,分别为,的中点.(1)求证:平面;(2)求平面与平面所成二面角锐角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.——①由,得.——②由①②,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.2、C【解析】
根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.3、A【解析】
只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.4、B【解析】
取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.5、D【解析】
根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.6、A【解析】
设,用表示出,求出的值即可得出答案.【详解】设由,,.故选:A【点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.7、D【解析】
由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,,,令,则有,故的最小值为11,故选:D.【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.8、C【解析】
试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.考点:频率分布直方图及其应用.9、D【解析】
首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.10、B【解析】
先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【详解】,,因为,,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B.【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.11、D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.12、B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用等比数列的性质求得,进而求得,再利用对数运算求得的值.【详解】由于,,所以,则,∴,,.故答案为:【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.14、1【解析】
由正弦定理,结合,,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1).1(2).【点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.15、【解析】
取基向量,,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得.【详解】如图:设,又,且存在实数使得,,,,,,故答案为:.【点睛】本题考查了平面向量数量积的性质及其运算,属中档题.16、【解析】
利用复数的概念与复数的除法运算计算即可得到答案.【详解】,所以复数的实部为2.故答案为:2【点睛】本题考查复数的除法运算,考查学生的基本计算能力,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(Ⅰ)证明:过点作于点,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴点是的中点,连结,则∴平面∴∥,∴四边形是矩形设,得:,又∵,∴,从而,过作于点,则∴是与平面所成角∴,∴与平面所成角的正弦值为考点:面面垂直的性质定理;线面平行的判定定理;线面垂直的性质定理;直线与平面所成的角.点评:本题主要考查了线面平行的证明和直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做:用向量法解题的关键是;首先正确的建立空间直角坐标系,正确求解平面的一个法向量.注意计算要仔细、认真.≌18、(1);(2)证明见解析.【解析】
(1)分类讨论求解绝对值不等式即可;(2)由(1)中所得函数,求得最小值,再利用均值不等式即可证明.【详解】(1)当时,等价于,该不等式恒成立,当时,等价于,该不等式解集为,当时,等价于,解得,综上,或,所以不等式的解集为.(2),易得的最小值为1,即因为,,,所以,,,所以,当且仅当时等号成立.【点睛】本题考查利用分类讨论求解绝对值不等式,涉及利用均值不等式证明不等式,属综合中档题.19、见解析【解析】
若选择①,结合三角形的面积公式,得,化简得到,则,又,从而得到,将代入,得.又,∴,当且仅当时等号成立.∴,故的面积的最大值为,此时.若选择②,,结合三角形的面积公式,得,化简得到,则,又,从而得到,则,此时为等腰直角三角形,.若选择③,,则结合三角形的面积公式,得,化简得到,则,又,从而得到,则.20、(1)证明见解析(2)证明见解析【解析】
(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到结论,注意等号成立的条件.【详解】(1)由题意,则函数,又函数的最小值为,即,由柯西不等式得,当且仅当时取“=”.故.(2)由题意,利用基本不等式可得,,,(以上三式当且仅当时同时取“=”)由(1)知,,所以,将以上三式相加得即.【点睛】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.21、(1)(2)【解析】
(1)利用消参法以及点求解出的普通方程,根据极坐标与直角坐标的转化求解出直线的极坐标方程;(2)将的坐标设为,利用点到直线的距离公式结合三角函数的有界性,求解出取最小值时对应的值.【详解】(1)消去参数得普通方程为,将代入,可得,即所以的极坐标方程为(2)的直角坐标方程为直线的直角坐标方程设的直角坐标为∵在直线上,∴的最小值为到直线的距离的最小值∵,∴当,时取得最小值即,∴【点睛】本题考查直线的参数方程、普通方程、极坐标方程的互化以及根据曲线上一点到直线距离的最值求参数,难度一般.(1)直角坐标和极坐标的互化公式:;(2)求解曲线上一点到直线的距离的最值,可优先考虑将点的坐标设为参数方程的形式,然后再去求解.22、(1)证明见详解;(2).【解析】
(1)取中点为,通过证明//,进而证明线面平行;(2)取中点为,以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家居装饰物流配送合同
- 湖北医药学院《公共空间环境设计》2023-2024学年第一学期期末试卷
- 湖北文理学院《生存分析》2023-2024学年第一学期期末试卷
- 自贡四川自贡市第一人民医院招聘医疗辅助岗人员2人笔试历年参考题库附带答案详解
- 铁路承运人的定义及职责
- 漯河2024年河南漯河日报社招聘高层次人才4人笔试历年参考题库附带答案详解
- 浙江2025年浙江省数据局下属事业单位招聘3人笔试历年参考题库附带答案详解
- 清远2025年广东清远市公安局第一次警务辅助人员招聘5人笔试历年参考题库附带答案详解
- 铣刨旧路面施工方案
- 河北2024年河北劳动关系职业学院选聘59人笔试历年参考题库附带答案详解
- 2024年关爱留守儿童工作总结
- GB/T 45092-2024电解水制氢用电极性能测试与评价
- 《算术平方根》课件
- DB32T 4880-2024民用建筑碳排放计算标准
- 2024-2024年上海市高考英语试题及答案
- 注射泵管理规范及工作原理
- 山东省济南市2023-2024学年高二上学期期末考试化学试题 附答案
- 大唐电厂采购合同范例
- 国潮风中国风2025蛇年大吉蛇年模板
- GB/T 18724-2024印刷技术印刷品与印刷油墨耐各种试剂性的测定
- IEC 62368-1标准解读-中文
评论
0/150
提交评论