版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南省东方市民族中学高考数学考前最后一卷预测卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如下的程序框图,则输出的是()A. B.C. D.2.若实数、满足,则的最小值是()A. B. C. D.3.数列满足:,则数列前项的和为A. B. C. D.4.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则=()A. B.1 C. D.25.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是()A. B. C. D.6.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间7.若,,,则下列结论正确的是()A. B. C. D.8.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)9.若关于的不等式有正整数解,则实数的最小值为()A. B. C. D.10.双曲线的渐近线方程为()A. B. C. D.11.已知数列为等比数列,若,且,则()A. B.或 C. D.12.函数在内有且只有一个零点,则a的值为()A.3 B.-3 C.2 D.-2二、填空题:本题共4小题,每小题5分,共20分。13.正项等比数列|满足,且成等差数列,则取得最小值时的值为_____14.已知实数,满足则的取值范围是______.15.已知函数,若函数恰有4个零点,则实数的取值范围是________.16.设的内角的对边分别为,,.若,,,则_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中,.(1)当时,求的值;(2)当的最小正周期为时,求在上的值域.18.(12分)设抛物线过点.(1)求抛物线C的方程;(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.19.(12分)[选修45:不等式选讲]已知都是正实数,且,求证:.20.(12分)已知椭圆的右焦点为,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.(1)求椭圆的方程;(2)若圆上存在两点,,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.21.(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段的长.22.(10分)等比数列中,.(Ⅰ)求的通项公式;(Ⅱ)记为的前项和.若,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.2、D【解析】
根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.3、A【解析】分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.详解:∵,∴,又∵=5,∴,即,∴,∴数列前项的和为,故选A.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.4、B【解析】由题意或4,则,故选B.5、C【解析】
连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.【详解】如图,连接,椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,直线BF交直线AC于M,且M为AC的中点为的中位线,,且,,解得椭圆的离心率.故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.6、D【解析】
可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题7、D【解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.8、D【解析】
求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.9、A【解析】
根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值.【详解】因为不等式有正整数解,所以,于是转化为,显然不是不等式的解,当时,,所以可变形为.令,则,∴函数在上单调递增,在上单调递减,而,所以当时,,故,解得.故选:A.【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.10、C【解析】
根据双曲线的标准方程,即可写出渐近线方程.【详解】双曲线,双曲线的渐近线方程为,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.11、A【解析】
根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.12、A【解析】
求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,,在单调递增,且,在不存在零点;若,,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】
先由题意列出关于的方程,求得的通项公式,再表示出即可求解.【详解】解:设公比为,且,时,上式有最小值,故答案为:2.【点睛】本题考查等比数列、等差数列的有关性质以及等比数列求积、求最值的有关运算,中档题.14、【解析】
根据约束条件画出可行域,即可由直线的平移方法求得的取值范围.【详解】.由题意,画出约束条件表示的平面区域如下图所示,令,则如图所示,图中直线所示的两个位置为的临界位置,根据几何关系可得与轴的两个交点分别为,所以的取值范围为.故答案为:【点睛】本题考查了非线性约束条件下线性规划的简单应用,由数形结合法求线性目标函数的取值范围,属于中档题.15、【解析】
函数恰有4个零点,等价于函数与函数的图象有四个不同的交点,画出函数图象,利用数形结合思想进行求解即可.【详解】函数恰有4个零点,等价于函数与函数的图象有四个不同的交点,画出函数图象如下图所示:由图象可知:实数的取值范围是.故答案为:【点睛】本题考查了已知函数零点个数求参数取值范围问题,考查了数形结合思想和转化思想.16、或【解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角.用正弦定理;,则;可得.考点:运用正弦定理解三角形.(注意多解的情况判断)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据,得到函数,然后,直接求解的值;(2)首先,化简函数,然后,结合周期公式,得到,再结合,及正弦函数的性质解答即可.【详解】(1)因为,所以(2)因为即因为,所以所以因为所以所以当时,.当时,(最大值)当时,在是增函数,在是减函数.的值域是.【点睛】本题主要考查了简单角的三角函数值的求解方法,两角和与差的正弦、余弦公式,三角函数的图象与性质等知识,考查了运算求解能力,属于中档题.18、(1)(2)【解析】
(1)代入计算即可.(2)设直线AB的方程为,再联立直线与抛物线的方程,消去可得的一元二次方程,再根据韦达定理与求解,进而利用弦长公式求解即可.【详解】解:(1)因为抛物线过点,所以,所以,抛物线的方程为(2)由题意知直线AB的斜率存在,可设直线AB的方程为,,.因为,所以,联立,化简得,所以,,所以,,解得,所以.【点睛】本题考查抛物线的方程以及联立直线与抛物线求弦长的简单应用.属于基础题.19、见解析【解析】试题分析:把不等式的左边写成形式,利用柯西不等式即证.试题解析:证明:∵,又,∴考点:柯西不等式20、(1);(2)【解析】
(1)又题意知,,及即可求得,从而得椭圆方程.(2)分三种情况:直线斜率不存在时,的斜率为0时,的斜率存在且不为0时,设出直线方程,联立方程组,用韦达定理和弦长公式以及四边形的面积公式计算即可.【详解】(1)由焦点与短轴两端点的连线相互垂直及椭圆的对称性可知,,∵过点且与轴垂直的直线被椭圆截得的线段长为.又,解得.∴椭圆的方程为(2)由(1)可知圆的方程为,(i)当直线的斜率不存在时,直线的斜率为0,此时(ii)当直线的斜率为零时,.(iii)当直线的斜率存在且不等于零时,设直线的方程为,联立,得,设的横坐标分别为,则.所以,(注:的长度也可以用点到直线的距离和勾股定理计算.)由可得直线的方程为,联立椭圆的方程消去,得设的横坐标为,则..综上,由(i)(ii)(ⅲ)得的取值范围是.【点睛】本题考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常利用的关系,确定椭圆方程是基础;通过联立直线方程与椭圆方程建立方程组,应用一元二次方程根与系数,得到目标函数解析式,运用函数知识求解;本题是难题.21、(1)l:,C:;(2)【解析】
(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换;
(2)由(1)可得曲线是圆,求出圆心坐标及半径,再求得圆心到直线的距离,即可求得的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网公司技术开发聘用合同
- 2024年版权购买合同:漫画作品的数字化改编与发行
- 园林景观招投标操作规程
- 2024年度地磅销售合同书(含设备检测服务)3篇
- 2024年稀土材料采购合同
- 湖泊度假村道路改造合同
- 风力发电土石方劳务合同
- 2025年度绿色节能办公楼房地产买卖居间代理合同3篇
- 医疗保险医生劳动合同范本
- 现代农业技术员聘用合同
- DB63T 2376-2024 餐饮单位有害生物防治技术指南
- 中考语文名著《西游记》专项复习:《三调芭蕉扇》
- 2025新年春节专用对联蛇年春联带横批
- 【MOOC】融合新闻:通往未来新闻之路-暨南大学 中国大学慕课MOOC答案
- 2024年世界职业院校技能大赛中职组“工程测量组”赛项考试题库(含答案)
- 半结构化面试题100题
- 静脉治疗小组管理
- 浙江省杭州二中2025届物理高三第一学期期末联考试题含解析
- 带货主播年终总结汇报
- 2024中国绿发投资集团限公司招聘300人高频难、易错点练习500题附带答案详解
- 消化系统护理常规
评论
0/150
提交评论