全等三角形的应用-角平分线专题_第1页
全等三角形的应用-角平分线专题_第2页
全等三角形的应用-角平分线专题_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

角平分线专题1、如图,BD是四边形ABCD中∠ABC的平分线,∠A+∠C=180°,求证:DA=CDAABCDACBD2、如图,已知△ABC中,AB=AC,∠A=100°ACBD3、如图,已知△ABC中,BC=AC,∠C=90°,ACBACBD4、如图所示,已知AD//BC,AE平分∠DAB,BE平分∠ABC,直线DC过点E交AD于点D,交BC于点C,求证:(1)E为DC的中点;ADECB(2)AD+ADECBABCDE5、如图,AD⊥DC,BC⊥DC,E是DC上一点,AE平分ABCDEAABCDEAABCDEDCBAE6、如图四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠D+∠B=180°,求证:AD+DCBAEDDCBAEDDCBAE7、如图,△ABC中,AD是∠A的平分线,E、F分别为AB、AC上一点,且∠EDF+∠BAF=180°,求证:DE=DF.8、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于O点,求证:AE+CD=AC.DDOCEBA9、如图在四边形ABCD中,AC平分∠BAD,∠ADC+∠ABC=180度,CE⊥AD于E,猜想AD、AE、AB之间的数量关系,并证明你的猜想,EEBAC图2DABCDEF10、如图,在△ABC中,∠C=90°ABCDEF求证:CF=EB11、已知:如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC,CE⊥BD的延长线于E.求证:BD=2CE.(角分垂,等腰归)ABCEPDFABCEPDFABCEPDF求证:AF垂直平分DE。13、如图,已知BF是∠DBC的平分线,CF是∠ECB的平分线,求证:点F在∠BAC的平分线上。AABCFEDAOBDPMN14、如图,已知OD平分AOBDPMNACBACBPRSQ16、如图,已知△ABC中,CE平分∠ACB,且AE⊥CE,∠AED+∠CAE=180度,求证:DE∥BCAACDE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论