【八年级上册数学苏科版】练习题-1.3 探索三角形全等的条件_第1页
【八年级上册数学苏科版】练习题-1.3 探索三角形全等的条件_第2页
【八年级上册数学苏科版】练习题-1.3 探索三角形全等的条件_第3页
【八年级上册数学苏科版】练习题-1.3 探索三角形全等的条件_第4页
【八年级上册数学苏科版】练习题-1.3 探索三角形全等的条件_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3《探索三角形全等的条件》同步练习一 、选择题1.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠C=∠F D.以上三个均可以2.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C3.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边 B.角边角 C.边边边 D.边边角C作)5.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SASB.ASA C.SSS D.HL6.要测量圆形工件的外径,工人师傅设计了如右图所示的卡钳,O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则这个工件的外径必是CD之长了,其中的依据是全等三角形的判定条件()A.ASAB.AASC.SASD.SSS7.下列语句不正确的是(

)A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三角形的外角等于不相邻两个内角的和D.全等三角形对应边相等8.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()A.∠B=∠B′ B.∠C=∠C′ C.BC=B′C′ D.AC=A′C′9.山脚下有A、B两点,要测出A、B两点间的距离.在地上取一个可以直接到达A、B点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE.可以证△ABC≌△DEC,得DE=AB,因此,测得DE的长就是AB的长.判定△ABC≌△DEC的理由是()A.SSSB.ASAC.AASD.SAS10.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS11.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等12.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组二 、填空题13.如图,沿直线AC对折,△ABC与△ADC重合,则△ABC≌,AB的对应边是,∠BCA的对应角是.

14.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD=,根据可得到△AOD≌△COB,从而可以得到AD=.15.如图,已知AB=AD,要使△ABC≌△ADC,那么可以添加条件

.16.如图,AB、CD相交于O,且AO=OB观察图形,图中已具备的另一个相等的条件是,联想“SAS”,只需补充条件,则有△AOC≌△BOD.17.如图,已知AB∥CD,AE=CF,则下列条件:①AB=CD;②BE∥DF;③∠B=∠D;④BE=DF.其中不一定能使△ABE≌△CDF的是(填序号)18.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是.三 、解答题19.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF.求证:DE=CF.20.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.21.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.22.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.23.如图,在△ABC中,∠ACB=90°,AC=6,BC=8.点P从点A出发沿路径A→C→B向终点B运动;点Q从点B出发沿路径B→C→A向终点A运动.点P和点Q分别以1个单位′秒和3个单位′秒的速度同时开始运动,两点都要到相应的终点时才能停止运动,在某一时刻,过点P作PE⊥l于点E,过点Q作QF⊥l于点F.问:点P运动多少时间时,△PEC与△CFQ全等?请说明理由.

参考答案1.B2.B3.B4.B5.B6.C7.B8.C9.D10.A11.B12.C13.答案为:△ADC;AD;∠DCA14.答案为:∠COB,SAS,CB.15.答案为:DC=BC(或∠DAC=∠BAC或AC平分∠DAB等)

16.答案为:∠AOC=∠BOD,CO=DO.17.答案为:④.18.答案为:乙、丙.19.证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.20.证明:∵CE∥DF∴∠ECA=∠FDB,在△ECA和△FDB中,,∴△ECA≌△FDB,∴AE=FB.21.证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).22.证明:(1)∵∠1=∠2,∴∠1+∠CBE=∠2+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)∵△ABE≌△CBD,∴∠A=∠C,∵∠AFB=∠CFE,∴∠1=∠3.23.解:设运动时间为t(s)时,△PEC与△CFQ全等.∵△PEC与△CFQ全等,∴斜边CP=QC.当0<t<6时,点P在AC上;当6≤t≤14时,点P在BC上.当0<t<eq\f(8,3)时,点Q在BC上;当eq\f(8,3)≤t≤eq\f(14,3)时,点Q在AC上.有三种情况:①当点P在AC上,点Q在BC上时(0<t<eq\f(8,3)),如解图①.易得CP=6-t,QC=8-3t,∴6-t=8-3t,解得t=1.②当点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论