版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ASurveyonHuman-CentricLLMs
JINGYIWANG*,TsinghuaUniversity,China
arXiv:2411.14491v2[cs.CL]26Nov2024
NICHOLASSUKIENNIK*,TsinghuaUniversity,ChinaTONGLI,TsinghuaUniversity,China
WEIKANGSU,TsinghuaUniversity,China
QIANYUEHAO,TsinghuaUniversity,ChinaJINGBOXU,TsinghuaUniversity,China
ZIHANHUANG,TsinghuaUniversity,ChinaFENGLIXU,TsinghuaUniversity,China
YONGLI,TsinghuaUniversity,China
Therapidevolutionoflargelanguagemodels(LLMs)andtheircapacitytosimulatehumancognitionandbehaviorhasgivenrisetoLLM-basedframeworksandtoolsthatareevaluatedandappliedbasedontheirabilitytoperformtaskstraditionallyperformedbyhumans,namelythoseinvolvingcognition,decision-making,andsocialinteraction.Thissurveyprovidesacomprehensiveexaminationofsuchhuman-centricLLMcapabilities,focusingontheirperformanceinbothindividualtasks(whereanLLMactsasastand-inforasinglehuman)andcollectivetasks(wheremultipleLLMscoordinatetomimicgroupdynamics).WefirstevaluateLLMcompetenciesacrosskeyareasincludingreasoning,perception,andsocialcognition,comparingtheirabilitiestohuman-likeskills.Then,weexplorereal-worldapplicationsofLLMsinhuman-centricdomainssuchasbehavioralscience,politicalscience,andsociology,assessingtheireffectivenessinreplicatinghumanbehaviorsandinteractions.Finally,weidentifychallengesandfutureresearchdirections,suchasimprovingLLMadaptability,emotionalintelligence,andculturalsensitivity,whileaddressinginherentbiasesandenhancingframeworksforhuman-AIcollaboration.ThissurveyaimstoprovideafoundationalunderstandingofLLMsfromahuman-centricperspective,offeringinsightsintotheircurrentcapabilitiesandpotentialforfuturedevelopment.
AdditionalKeyWordsandPhrases:LargeLanguageModels,Human-CenteredComputing.
1INTRODUCTION
Aslargelanguagemodels(LLMs)
[1,
2],suchasOpenAI’sGPTfamily
[3,
4]andMeta’sLLaMA
[5,
6],continuetoevolve,theirabilitytosimulate,analyze,andinfluencehumanbehavioris
growingatanunprecedentedrate.Thesemodelscannowprocessandgeneratehuman-liketextandperformcognitivetasksatlevelscomparabletohumansinmanysituations,providingnewtoolsforunderstandinghumancognition,decision-making,andsocialdynamics.
Assuch,thissurveyaimstoprovideacomprehensiveevaluationofLLMsfromahuman-centricperspective,focusingontheirabilitytosimulate,complement,andenhancehumancognitionandbehavior,bothonanindividualandcollectivelevel.WhileLLMshavetraditionallybeenrootedincomputerscienceandengineering
[7,
8],theirincreasingsophisticationinreplicatinghuman-like
reasoning,decision-making,andsocialinteractionshasexpandedtheiruseintodomainswherehumansarethefocalpoint.Thishasallowedresearcherstoaddressquestionsthatwereoncetoointricateorabstractforcomputationalanalysis.Forexample,inpoliticalscience,LLMsareusedtoanalyzepoliticaldiscourse,detectbiases,andmodelelectionoutcomes
[9];insociology,they
assistinunderstandingsocialmediaconversations,publicsentiment,andgroupbehaviors
[10];
Authors’addresses:JingYiWang*,TsinghuaUniversity,Beijing,China,jy-w22@;NicholasSukiennik*,TsinghuaUniversity,Beijing,China,sukiennikn10@;TongLi,TsinghuaUniversity,Beijing,China,tongli@;WeikangSu,TsinghuaUniversity,Beijing,China;QianyueHao,TsinghuaUniversity,Beijing,China;JingboXu,TsinghuaUniversity,Beijing,China;ZihanHuang,TsinghuaUniversity,Beijing,China;FengliXu,TsinghuaUniversity,Beijing,China;YongLi,TsinghuaUniversity,Beijing,China,liyong07@.
J.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
2Wangetal.
andinpsychology,theyhelpmodelhumancognitionanddecision-making
[11]
.LLMshavealsorevolutionizedlinguisticsbyenablinglarge-scaleanalysisoflanguage,fromsyntaxandsemanticstopragmatics
[12],andineconomics,theyallowformodelingcomplexinteractionsbetweenpolicies
andsocietaloutcomes
[13]
.
Tostructurethisinvestigation,thesurveyisdividedintotwomainsections.First,weevaluatehuman-centricLLMs,focusingontheircognitive,perceptual,social,andculturalcompetencies.ThissectionexamineshowLLMsperformtaskscommonlyassociatedwithhumancognition,suchasreasoning,perception,emotionalawareness,andsocialunderstanding.Weassesstheirstrengthsinstructuredreasoning,patternrecognition,andcreativity,whileidentifyingtheirlimitationsinareassuchasreal-timelearning,empathy,andhandlingcomplex,multi-steplogic.BybenchmarkingLLMperformanceagainsthumanstandards,wehighlightareaswhereLLMsexcelandwherefurtherimprovementsareneeded.
Second,weexploreLLMsinhuman-centricapplieddomains,whereLLMsareusedinreal-worldscenariosthattraditionallyrequirehumaninput.Thissectionisdividedintostudiesfocusingonindividualandcollectiveapplications,whereindividual-focusedstudiesinvolveanLLMperformingtaskstypicallydonebyasinglehuman,suchasdecision-making,problem-solving,orcontentcreation,andcollective-focusedstudiesexplorehowmultipleLLMscanworktogethertosimu-lategroupbehaviors,interactions,orcollaborativetasks,offeringinsightsintosocialdynamics,organizationalbehavior,andmulti-agentcoordination.Inbothcontexts,weexaminethemethodsemployedsuchasbasicprompting,multi-agentprompting,andfine-tuning,alongwiththetheoret-icalframeworksthatguidetheseapplications,includinggametheory,sociallearningtheory,andtheoryofmind,etc.
Ultimately,thissurveyseekstoprovideadetailedunderstandingofhowLLMscanbetteralignwithhumanbehaviorsandsocialcontexts,identifyingboththeirstrengthsandareasforimprovement.Figure
1
providesanoverviewofthisframework,categorizingLLMcapabilitiesintoindividualskills,suchascognition,perception,analysis,andexecutivefunctioning,andcollectiveskillslikesocialabilities,andhighlightingtheircapabilitiesinapplyingtostudiesacrossindividualdomainslikebehavioralscience,psychology,andlinguistics,andcollectivedomainsincludingpoliticalscience,economics,andsociology.Inclassifyingresearchworkswiththisframework,weofferinsightsintohowLLMscanbemademoreeffective,ethical,andrealistictoolsforresearchandpracticalapplications,whetherinindividualorcollectivehuman-centricsettings.
Themaincontributionsofthispapercanbesummarizedasfollows.
•Weprovideanin-depthevaluationofLLMcapabilitiesinhuman-centrictasks,focusingontheircognitive,perceptual,andsocialcompetencies,andcomparingtheirperformancetohuman-likereasoning,decision-making,andemotionalunderstanding.
•WeexploreLLM’scapabilitiesinhuman-centricdomains,namelyfocusingonreal-worldapplicationsinindividualandcollectivecontexts,assessingtheirabilitytoreplicatehumanbehaviorsinfieldssuchasbehavioralscience,politicalscience,economics,andsociology,bothassingle-agentmodelsandinmulti-agentsystems.
•Weidentifykeychallengesandfutureresearchdirections,includingimprovingLLMs’real-worldadaptability,emotionalintelligence,andculturalsensitivity,whileaddressingbiasesanddevelopingmoreadvancedframeworksforhuman-AIcollaboration.
Thepaperisorganizedasfollows:Section2providesanoverviewofAI-empoweredhuman-centricstudiesandLLMs,whileSection3evaluatesLLMcompetenciesacrosscognitive,perceptual,analytical,executive,andsocialskills.Section4discusseshowLLMscanbeappliedinavarietyofinterdisciplinaryscenariostobothenhanceLLMdevelopmentandassistinhuman-centeredtasks.
Section5exploresopenchallengesandoutlinesfuturedirectionsforadvancingLLMs.SectionJ.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
ASurveyonHuman-CentricLLMs3
Individual
Collective
Domains
Skills
Cognition
LLM
BehavioralScience
ExecutiveFunction
PoliticalScience
Psychology
Linguistics
Perception
Sociability
Sociology
Economics
Analysis
Fig.1.OurframeworkdepictshowLLMsareevaluatedonfoundationalhuman-likeskills,dividedintoindi-vidual(e.g.,cognition,perception,analysis,executivefunctioning)andcollective(e.g.,sociability)levels,andappliedwithinvariousfieldsofstudysimilarlycategorizedasindividual(e.g.,BehavioralScience,Psychology,Linguistics)andcollective(e.g.,PoliticalScience,Economics,Sociology)domains.
6summarizeskeyinsightsandemphasizestheimportanceofinterdisciplinarycollaborationtoenhanceLLMs’understandingofhumanbehavior.
2OVERVIEW
2.1Human-CentricArtificalIntelligence
2.1.1TraditionalAIApproachesinHuman-CentricStudies.TheapplicationofAIinvarioushuman-centeredfieldshasundergonealongprogression,nowreachingapinnaclewiththeriseofgenerativemodels,withAImethodstobeingusedinvestigatevarioushumanphenomena.however,despitetheirrelativenaivetycomparedtoLLMs,thosetraditionalmethodshavenonethelessenabledresearcherstoaddresscomplexsocialphenomenathroughcomputation.
Foralmostaslongasithasbeeninvestigated,AIhasbeenusedinareasthatarehighlyim-pactfulonsociety
[14]
.SincethenresearchershaveevaluatedthemanywaysinwhichAIcouldemulatehumanbehaviorandthoughtprocession,forexampleincognition
[15],perception
[16],
andexecutivefunction
[17]
.Morerecently,though,withtheriseofthewebandsocialmedia,AI’susescomeclosertoourday-to-daylives.Forexample,inpoliticalcommunicationresearch,thedetectionofpoliticalbiasinnewsarticleshasemergedasacriticalareaofstudy,particularlygiventheincreasingpolarizationinmediaandonlinespaces.Traditionalmethodsforpredictingpoliticalideology,basedonstatisticalmodelingandnetworkanalysis,havebecomeanurgenttaskduetothevastamountofcontentproduceddaily.Forinstance,researchby
[18]employednetwork
analysistoestimateideologicalpreferencesofsocialmediausers.Moreover,techniquesliketopicmodelingandcontentanalysishavebeenwidelyusedtoidentifybiasandmisinformationinnewsarticlesusingdata-miningmethods
[19,
20],highlightingtheuseoftraditionalAItechniquesin
understandingpoliticaldiscourse.Otherworkstackledthetaskofstancedetectionusingmethods
likerecursiveneuralnetworks[21]andclusteringalgorithms[22].Furthermore,Dezfoulietal.
[23]
exploreadversarialvulnerabilitiesindecision-makingmodels,whichiscrucialwhenconsideringJ.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
4Wangetal.
therobustnessoftraditionalbiasdetectionsystemsunderadversarialconditions.Furthermore,Dafoeetal.
[24]emphasizetheimportanceofsystemsdesignedtonavigatesocialenvironments,
suchaspoliticaldiscourse,usingmoreestablishedmulti-agentsystemsandgametheoryframe-works.Meanwhile,machineunderstandingofhumanpreferenceshasalsobeenusedtooptimizethelearningofrewardfunctionsinreinforcementlearning
[25],showingusthatAImethodsnot
onlyhelpusexplainhumanbehavior,butcanbenefitbyunderstandingthem,highlightingtheco-evolutionarynatureofadvancementsinbothAItechniquesandhuman-centricstudies.
Overall,thevastbodyofAI-empoweredhuman-centricstudiespointtotheburgeoningpotentialofusingmoreadvancedcomputationalmethods,suchasLLMs,tobothunderstandandbettersimulatehumanbehaviorandreasoningprocesses.LLMscanpresentnewopportunitiesinthefieldbysimulatinghumanbehaviorsinareaswherereal-worlddataisscarce,aswellasfacilitateinquiryintolawsanddynamicsofhumanbehaviorbasedonLLMreplicability.
2.1.2AParadigmShiftfromTraditionalAItoLLMs.TheriseofLLMshastransformednaturallanguageprocessing(NLP)andartificialintelligenceingeneralthroughkeybreakthroughsinmodelarchitecture,scale,andcapabilities.EarlymodelslikeWord2VecandGloVeusedwordembeddings,buttheintroductionoftheTransformerin2017
[26],withitsself-attentionmechanism,enabled
deepercontextualunderstandingandmarkedaturningpoint.OpenAI’sGPTseries,beginningin2018withGPT
[3],capitalizedonthis,culminatinginGPT-3
[27]andGPT-4
[28],whichdemon
-stratedunprecedentedcapabilitiesinreasoning,textgeneration,andmultimodaltasks.Meanwhile,Google’sPaLM2
[29]advancedmultilingualismandefficiency,andopen-sourcemodelslikeFalcon
[30]andBaidu’sERNIEBot
[31]broadenedaccessandspecialization
.ThesedevelopmentsreflectthegrowingimpactofLLMsacrossdiversedomains,frominterdisciplinaryresearchtoethicalAIapplications.
TherapidadoptionofLLMsacrossacademicdisciplineshasledtovaryingpredictionsaboutwhetherthesesystemswilleventuallymatchhumancognitiveabilities.WhilesomeexpertsforeseeAIachievinghuman-likegeneralintelligenceinthenearfuture,othersremainmorecautious,doubtingwhetherAIcanfullyreplicatethecomplex,abstractreasoningandcreativitythatdefinehumancognition
[32]
.Despitethesedifferingviewpoints,AIisalreadyasignificantforceineverydaylife,influencingdecision-makingandinformationprocessingacrossnumerousdomains.However,akeydistinctionremains:humancognitionisdrivenbyforward-thinking,theory-basedreasoning,whileAIoperatesonpatternsderivedfromvastdatasets,oftenrelyingonprobabilityandpastdata
[33].ThisdifferenceunderscoresthecomplementarynatureofhumanandAIsystems,
witheachexcellingindistinctaspectsofcognitiveprocessing.
Unlikehumanintelligence,LLMsoperatewithoutinherentgoals,values,oremotionalexperi-ences.Humancognition,drivenbysurvival,socialinteraction,andcreativity,isdeeplyconnectedtoourphysicalandsocialenvironments.EvenembodiedAI,whilecapableofinteractingwithitssurroundings,lacksthenuanced,purpose-drivenintelligencethatdefineshumanthought.Incontrast,LLMsgenerateresponsesbasedonprobabilisticmodelsderivedfromlargedatasets,with-outthelivedexperiencesthatinformhumandecision-making.ThoughLLMscansimulatecertainhuman-likebehaviors,theystillfallshortoftheembodiedunderstandinghumanspossess.
ThesedistinctionsraisecriticalquestionsaboutthelimitationsandpotentialsofAI,especiallyasweconsiderthediversecapabilitiesexploredinSection
3,whichdiscussesthecapabilitiesofLLMs
includingcognitive,perceptual,social,analytical,executive,cultural,moral,andcollaborativeskills.Section
4
delvesintohowinterdisciplinaryfields,suchaspoliticalscience,economics,sociology,behavioralscience,psychology,andlinguistics,contributetoLLMdevelopment,offeringinsights
J.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
ASurveyonHuman-CentricLLMs5
intohowhumanintelligenceinformsandshapestheevolutionofartificialsystems.Thisexplo-rationemphasizestheimportanceofleveragingLLMstrengthswhilerecognizingthefundamentaldifferencesbetweenhumanandartificialcognition.
3EVALUATIONOFHUMAN-CENTRICLLMS
Toevaluatehuman-centricLLMs,weshowcaseaholisticrepresentationofLLMcompetencies,categorizedintotwodomains:individual(e.g.,cognitive,perceptual,analytical,executivefunc-tioningskills)andcollective(e.g.,socialskills),asshowninFigure
2.
ThisrepresentationincludesvariouskeyLLMskills,suchasreasoning,patternrecognition,spatialawareness,adaptability,decision-making,interpersonalcommunication,andculturalcompetency.Followingthis,Figure
3
outlinestheevaluationapproachesusedtoassessLLMs,includingbenchmarkanddatasettest-ing,human-centricevaluations,interactiveandsimulation-basedevaluations,ethicalandbiasassessments,andlastly,explainabilityandinterpretabilityevaluations.Table
1
highlightsboththestrengthsandareasforimprovementinthesedomains.Byoutliningtheseabilities,weprovideacomprehensivecomparisonofhuman-likeskills,usingbenchmarkstoassesstheirstrengthsandlimitations.Additionally,AppendixTables
2
and
3
provideacomprehensiveoverviewofkeypapers,highlightingtheircontributions,theLLMsassessed,andcomparisonstohumanperformance.Thesubsequentsectiondelvesintoeachcategory,providinganin-depthexplorationoftheskillsandbenchmarksthatdefineLLMperformanceacrossthesedomains.
cuttural
competene"
O
C入
O
Recognition
Pattern
Individual
InformationProcessing
Fig.2.OverviewofLLMCapabilitiesAcrossIndividualandCollectiveDomains.
J.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
6Wangetal.
3.1CognitiveSkills
LLMsdemonstratecognitivecompetenciesthatmirrorkeyelementsofhumanintelligence,primarilythroughreasoningandlearning.WhileLLMsshowremarkableabilityinprocessingvastamountsofinformationandgeneratingcoherentresponses,theirproficiencyvarieswhenitcomestocomplexcognitivetasks.Thesemodelsshowcaseevolvedabilitiesinstructuredreasoningandgeneralizationbutencounterchallengeswhenfacedwithintricatelogicorlearningfromreal-timeinteractions.ThissectionexploresthestrengthsandlimitationsofLLMsinreasoningandlearning,highlightingtheirprogressandareasthatrequirefurtheradvancement.
3.1.1Reasoning.Logicalreasoning,acoreelementofhumancognitionandessentialfordailyfunctioning,consistsofvarioustypesofreasoning,includingdeductive,inductive,andcausalrea-soning,eachcontributingtohowweprocessinformationandmakedecisions.Deductivereasoningappliesgeneralprinciplestoobtainspecificconclusions,whileinductivereasoningdrawsgeneral-izationsfromspecificobservations
[34],andcausalreasoninghelpstounderstandcause-and-effect
relationships
[35,
36]
.
SeveralbenchmarkdatasetshavebeendevelopedtoassessthesereasoningcapabilitiesinLLMs.Fordeductivereasoning,theLogiQA2.0dataset
[37]isanotableresource,focusingonfivetypes
ofreasoning,includingcategorical,necessaryconditional,sufficientconditional,conjunctive,anddisjunctivereasoning.PrOntoQA
[38]alsoevaluatesdeductivereasoningthroughfirst-orderlogic
taskswhereLLMsderivespecificconclusionsfromlogicalpremises.Forinductivereasoning,CommonsenseQA2.0
[39]requiresgeneralizationfromeverydayfactsandcommonsenseknowl
-edge,whereastheCreakdataset
[40]furthertestsLLMs’abilitytogeneralizefromcommonsense
knowledgetoidentifyinconsistencies.Inturn,causalreasoningisassessedusingCausalBench
[41],
whichevaluatesLLMs’abilitytoreasonaboutcause-and-effectrelationshipsacrossdiversedo-mains.ContextHub
[42],ontheotherhand,servesasanotherbenchmarkfocusingonLLMs’causal
reasoninginbothabstractandcontextualizedtasks.AdditionaldatasetslikeGSM8K
[43]and
BIG-Bench-Hard
[44]arefurthermoreemployedformathematicalreasoningandevaluatingLLM
performanceacrossvariousreasoningdomains,respectively.
AnalyzingLLMperformancewiththesedatasetshasrevealedsignificantinsightsintotheirreasoningabilitiesandlimitations.Fordeductivereasoning,althoughLLMslikeGPT-3havemadeprogress,theiraccuracyremainsat68.65%intasksinvolvinglogicalinference,whichissignificantlybelowthe90%humanbenchmark
[37]
.Thisgapindicatesongoingchallengesinmasteringcomplexlogicalstructures,especiallywhenmultiplelogicalstepsorintricatereasoningprocessesarerequired.LLMslikeGPT-3.5,PaLM,andLLaMAperformwellonsimplerdeductivereasoningtasksbutstrugglewithmorecomplexscenariosthatinvolvechainingmultiplelogicalpremisestogether
[45]
.Forinductivereasoning,ontheotherhand,GPT-4showsimprovementsinruleapplicationwithupto99.5%partialaccuracy
[46],yetstruggleswithlargerproblemsandminimal
examples.EvenwithChain-of-Thought(CoT)prompting,GPT-4andDavincifacedifficultiesinrulevalidationandintegratingcomplexrules,withDavinci’saccuracydecliningto51%innuancedtasks
[47]
.Inaddition,Hanetal.
[47]evaluateGPT-3.5andGPT-4onpropertyinductiontasks,
highlightingthatwhileGPT-4morecloselyalignswithhumanreasoningpatterns,theystillstruggletofullycapturepremisenon-monotonicity,acriticalelementofhumancognitiveprocessing.
CausalreasoningremainsasignificantchallengeforLLMslikeGPT-4andDavinci,asitrequiresadeepunderstandingofcause-and-effectacrossvariouscontexts.Althoughthesemodelsshowreasonableproficiencyinmathematicalcausaltasks,theCausalBenchbenchmarkhighlightstheirstruggleswithmorecomplextext-basedandcoding-relatedcausalproblems
[41].Interpretingcausal
structuresinnarrativesorcodesnippetsoftengoesbeyondsimpledatacorrelations,demanding
robustreasoningtoavoidproducingmisleadingoutputs.EvenwhenGPT-4initiallyperformswell,J.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
ASurveyonHuman-CentricLLMs7
Interactive&
Simulation-BasedEvaluations
.Single-AgentSimulations.Multi-AgentSimulations.Task-OrientedDialogues
Human-CentricEvaluations
.ExpertEvaluations.Crowdsourced
Evaluations
.Human-in-the-Loop
Testing
Ethical&BiasAssessments
.BiasDetection
.FairnessMetrics
.EthicalCompliance
Benchmark&
DatasetTesting
.Standardized
Benchmarks
.CustomBenchmarks.PerformanceMetrics
Explainability&Interpretability
.TransparencyofReasoning
.UserInterpretability
.TechnicalInterpretability
LLM
Evaluations
Fig.3.OverviewofLLMevaluations.
itsreasoningcapabilitiesfrequentlyweakenwhenfacedwithflawedorconflictingarguments,raisingconcernsaboutitsconsistencyincomplexscenarios
[48]
.
TheContextHubbenchmarkisdevelopedtoassessLLMslikeGPT-4,PaLM,andLLaMAinhandlingbothabstractandcontextualizedlogicalproblems
[42]
.ContextHubfocusesonthechallengesthesemodelsencounterwhentransitioningfromsimplelogictaskstonuanced,real-worldreasoning.Whilemodelsperformwellwithstraightforwardproblems,theyoftenstruggletogeneralizeincontext-richscenariosrequiringdeeperinterpretativeskills.AdditionaldatasetslikeGSM8Kemphasizedeductivereasoning,andBIG-Bench-Hardevaluatesmulti-stepreasoning,factualknowledge,andcommonsenseunderstanding
[43,
44]
.Together,thesebenchmarksrevealcriticalinsightsintothestrengthsandlimitationsofmodelslikeGPT-4andDavinci,pinpointingareasthatneedimprovementforhandlingcomplex,real-worldreasoningtasks.
Overall,thesebenchmarkdatasetsprovideacomprehensiveevaluationframeworkforassessingLLMs’reasoningcapabilities,revealingboththeiradvancementsandlimitations.WhileLLMshaveshownprogressinhandlingspecificreasoningtasks,theycontinuetofacesignificantchallengesinmulti-steplogic,contextualproblem-solving,andgeneralizingtheirreasoningabilitiesacrossdiversedomains.
3.1.2Learning.LLMs’learningabilityencompassestheircapacitytoadapt,generalize,andimproveperformancebasedonpre-existingtrainingdataandinteractionswithusersorenvironments.Unliketraditionallearningmodels,LLMsdonotupdatetheirparametersduringinference.Instead,theyrelyonpre-trainedknowledgetoperformfew-shotorzero-shottasks,highlightingtheirgeneralizationcapabilities.However,thiscomeswithsignificantlimitationswhenfacedwithevolving,real-worlddata.
RecenteffortshaveaimedatimprovingLLMadaptabilitythroughvariousstrategies.Forinstance,theRLwithGuidedFeedback(RLGF)framework
[49]optimizeslearningfromfeedback,showing
thatguidedstrategiescansignificantlyimprovetextgenerationindynamicconditions.Similarly,error-drivenlearningapproaches,likeLEMA(LearningfromMistAKes)
[50],allowmodelslike
GPT-4torefinereasoningbyidentifyingandcorrectingerrors.Theseapproacheshighlightthepotentialofleveragingfeedbackanderrorcorrectiontoboostadaptability,yettheystillrelyonstaticdataatinference.
J.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
8Wangetal.
Analysis
Cognition
Perception
Sociability
High
accuracyininformation
retrieval
Structuredmetadata-based
queries
Highvolumeofideasin
structuredtasks
Nuancedemotionalregulation
ExecutiveFunction
Cognition
Real-world,dynamic
challengeadaptation
Entity-basedreasoning
with
structureddatasets
Abstractlogic
reasoninginstructured
contexts
Contextualcue-basedreasoning
Abstractcommon-sense
reasoning
Contextuallogical
reasoning
Contradictorytaskhandling
Multi-step
reasoningwithreal-world
application
Structured,predefinedtask
handling
Context-specificempathy
Complex
Perception
ExecutiveFunction
Dynamicplanning
Real-time
adjustments
Controlledvirtual
environ-
ments
understanding
Socialcontextnavigation
mentalstate
Sociability
Analysis
Basic
empathytasks
Falsebelief
andindirectcue
recognition
Moreoriginal,dive
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阳台断桥铝防水施工方案
- 燃气凝水缸施工方案
- 线路登检施工方案
- 知名的假树施工方案
- 商洛环保塑胶跑道施工方案
- 室外篮球场刷漆施工方案
- 群租房社区治理方案
- 全自动立式制袋包装机行业深度研究报告
- 2025年中国核素药物行业发展监测及投资战略咨询报告
- 宏观经济学2024年案例分析教案2篇
- 《世界史通史温习》课件
- 人教版初中语文2022-2024年三年中考真题汇编-学生版-专题08 古诗词名篇名句默写
- 2024-2025学年人教版(2024)七年级(上)数学寒假作业(十二)
- 山西粤电能源有限公司招聘笔试冲刺题2025
- 第2课 各种各样的运动(说课稿)-2023-2024学年三年级下册科学教科版
- 医疗行业软件系统应急预案
- 股权质押权借款合同模板
- 2025年中国社区团购行业发展环境、运行态势及投资前景分析报告(智研咨询发布)
- 建材行业绿色建筑材料配送方案
- 使用错误评估报告(可用性工程)模版
- 放射性药物专题知识讲座培训课件
评论
0/150
提交评论