2024届上海培佳双语学校高三5月第二次阶段检测试题数学试题试卷_第1页
2024届上海培佳双语学校高三5月第二次阶段检测试题数学试题试卷_第2页
2024届上海培佳双语学校高三5月第二次阶段检测试题数学试题试卷_第3页
2024届上海培佳双语学校高三5月第二次阶段检测试题数学试题试卷_第4页
2024届上海培佳双语学校高三5月第二次阶段检测试题数学试题试卷_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届上海培佳双语学校高三5月第二次阶段检测试题数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为()A. B.C. D.2.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.3.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为()A. B. C. D.4.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为()A. B. C. D.5.已知函数,,若对,且,使得,则实数的取值范围是()A. B. C. D.6.函数在上的大致图象是()A. B.C. D.7.在关于的不等式中,“”是“恒成立”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则()A. B. C. D.9.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是()A. B. C. D.10.若集合,则()A. B.C. D.11.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()A. B. C. D.12.正项等比数列中,,且与的等差中项为4,则的公比是()A.1 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省.14.如图,是圆的直径,弦的延长线相交于点垂直的延长线于点.求证:15.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且=,那么椭圆的方程是.16.如图,直三棱柱中,,,,P是的中点,则三棱锥的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.18.(12分)已知椭圆的左焦点为F,上顶点为A,直线AF与直线垂直,垂足为B,且点A是线段BF的中点.(I)求椭圆C的方程;(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线交于点Q,且,求点P的坐标.19.(12分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.20.(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.(Ⅰ)求证:平面平面;(Ⅱ)若,求二面角的余弦值.21.(12分)在最新公布的湖南新高考方案中,“”模式要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门,后三科的高考成绩按新的规则转换后计入高考总分.相应地,高校在招生时可对特定专业设置具体的选修科目要求.双超中学高一年级有学生1200人,现从中随机抽取40人进行选科情况调查,用数字1~6分别依次代表历史、物理、化学、生物、地理、政治6科,得到如下的统计表:序号选科情况序号选科情况序号选科情况序号选科情况11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)双超中学规定:每个选修班最多编排50人且尽量满额编班,每位老师执教2个选修班(当且仅当一门科目的选课班级总数为奇数时,允许这门科目的1位老师只教1个班).已知双超中学高一年级现有化学、生物科目教师每科各8人,用样本估计总体,则化学、生物两科的教师人数是否需要调整?如果需要调整,各需增加或减少多少人?(2)请创建列联表,运用独立性检验的知识进行分析,探究是否有的把握判断学生“选择化学科目”与“选择物理科目”有关.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其热门人文专业的招生简章中明确要求,仅允许选修了历史科目,且在政治和地理2门中至少选修了1门的考生报名.现从双超中学高一新生中随机抽取3人,设具备高校专业报名资格的人数为,用样本的频率估计概率,求的分布列与期望.22.(10分)已知数列满足:对任意,都有.(1)若,求的值;(2)若是等比数列,求的通项公式;(3)设,,求证:若成等差数列,则也成等差数列.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【详解】椭圆的离心率:,(c为半焦距;a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,,故选:A【点睛】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.2.D【解析】

设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法3.C【解析】

先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.4.D【解析】

先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.5.D【解析】

先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,,故在区间上单调递减;当时,,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.6.D【解析】

讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.7.C【解析】

讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:当时,,由开口向上,则恒成立;当恒成立时,若,则不恒成立,不符合题意,若时,要使得恒成立,则,即.所以“”是“恒成立”的充要条件.故选:C.【点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出是的充分条件;若,则推出是的必要条件.8.A【解析】

作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.【详解】作于,于.因为平面平面,平面.故,故平面.故二面角为.又直线与平面所成角为,因为,故.故,当且仅当重合时取等号.又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.故.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.9.D【解析】

过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.【详解】解:因为,,所以,即过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,,,,,,0,,,1,,,,,,,设平面的法向量,则,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故选:D.【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.10.A【解析】

先确定集合中的元素,然后由交集定义求解.【详解】,.故选:A.【点睛】本题考查求集合的交集运算,掌握交集定义是解题关键.11.C【解析】

求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,,令,解得,,故当时,,当,,且,故方程在上有两个不同的实数根,故,解得.故选:C.【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.12.D【解析】

设等比数列的公比为q,,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q.【详解】由题意,正项等比数列中,,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D.【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

设圆柱的高为,底面半径为,根据容积为个立方单位可得,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值.【详解】设圆柱的高为,底面半径为.∵该圆柱形的如罐的容积为个立方单位∴,即.∴该圆柱形的表面积为.令,则.令,得;令,得.∴在上单调递减,在上单调递增.∴当时,取得最小值,即材料最省,此时.故答案为:.【点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题.14.证明见解析.【解析】试题分析:四点共圆,所以,又△∽△,所以,即,得证.试题解析:A.连接,因为为圆的直径,所以,又,则四点共圆,所以.又△∽△,所以,即,∴.15.【解析】

由题意可设椭圆方程为:∵短轴的一个端点与两焦点组成一正三角形,焦点在轴上∴又,∴,∴椭圆的方程为,故答案为.考点:椭圆的标准方程,解三角形以及解方程组的相关知识.16.【解析】

证明平面,于是,利用三棱锥的体积公式即可求解.【详解】平面,平面,,又.平面,是的中点,.

故答案为:【点睛】本题考查了线面垂直的判定定理、三棱锥的体积公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)证明见解析,或【解析】

(1)根据点到直线的公式结合二次函数的性质即可求出;(2)设,,,,表示出直线,的方程,利用表示出,,即可求定点的坐标.【详解】(1)设抛物线上点的坐标为,则,时取等号),则抛物线上的点到直线距离的最小值;(2)设,,,,,,直线,的方程为分别为,,由两条直线都经过点点得,为方程的两根,,直线的方程为,,,,,共线.又,,,解,,点,是直线上的动点,时,,时,,,或.【点睛】本题考查抛物线的方程的求法,考查直线方程的求法,考查直线过定点的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.(I).(II)【解析】

(I)写出坐标,利用直线与直线垂直,得到.求出点的坐标代入,可得到的一个关系式,由此求得和的值,进而求得椭圆方程.(II)设出点的坐标,由此写出直线的方程,从而求得点的坐标,代入,化简可求得点的坐标.【详解】(I)∵椭圆的左焦点,上顶点,直线AF与直线垂直∴直线AF的斜率,即①又点A是线段BF的中点∴点的坐标为又点在直线上∴②∴由①②得:∴∴椭圆的方程为.(II)设由(I)易得顶点M、N的坐标为∴直线MP的方程是:由得:又点P在椭圆上,故∴∴∴或(舍)∴∴点P的坐标为【点睛】本小题主要考查直线和圆锥曲线的位置关系,考查两直线垂直的条件,考查向量数量积的运算.属于中档题.在解题过程中,首先阅读清楚题意,题目所叙述的坐标、所叙述的直线是怎么得到的,向量的数量积对应的坐标都有哪一些,应该怎么得到,这些在读题的时候需要分析清楚.19.(1)或(2)【解析】

(1)分类讨论去绝对值即可;(2)根据条件分a<﹣3和a≥﹣3两种情况,由[﹣2,1]⊆A建立关于a的不等式,然后求出a的取值范围.【详解】(1)当a=﹣1时,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴当x≤﹣1时,原不等式可化为﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;当时,原不等式可化为x+1≤﹣2x﹣2,∴x≤﹣1,此时不等式无解;当时,原不等式可化为x+1≤2x,∴x≥1,综上,原不等式的解集为{x|x≤﹣1或x≥1}.(2)当a<﹣3时,,∴函数g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]⊆A,∴,∴a≤﹣5;当a≥﹣3时,,∴函数g(x)的值域A={x|﹣a﹣3≤x≤3+a}.∵[﹣2,1]⊆A,∴,∴a≥﹣1,综上,a的取值范围为(﹣∞,﹣5]∪[﹣1,+∞).【点睛】本题考查了绝对值不等式的解法和利用集合间的关于求参数的取值范围,考查了转化思想和分类讨论思想,属于中档题.20.(Ⅰ)详见解析;(Ⅱ).【解析】

(Ⅰ)由正方形的性质得出,由平面得出,进而可推导出平面,再利用面面垂直的判定定理可证得结论;(Ⅱ)取的中点,连接、,以、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法能求出二面角的余弦值.【详解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中点,连接、,是正方形,易知、、两两垂直,以点为坐标原点,以、、所在直线分别为、、轴建立如图所示的空间直角坐标系,在中,,,,、、、,设平面的一个法向量,,,由,得,令,则,,.设平面的一个法向量,,,由,得,取,得,,得.,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查面面垂直的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.21.(1)不需调整(2)列联表见解析;有的把握判断学生“选择化学科目”与“选择物理科目”有关(3)详见解析【解析】

(1)可估计高一年级选修相应科目的人数分别为120,2,推理得对应开设选修班的数目分别为15,1.推理知生物科目需要减少4名教师,化学科目不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论