版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省联盟高考冲刺数学模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知m为实数,直线:,:,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.是的()条件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要3.已知是定义在上的奇函数,且当时,.若,则的解集是()A. B.C. D.4.在边长为1的等边三角形中,点E是中点,点F是中点,则()A. B. C. D.5.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为()A. B. C. D.6.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为()A.800 B.1000 C.1200 D.16007.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A.或11 B.或11 C. D.8.已知函数,则方程的实数根的个数是()A. B. C. D.9.若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为()A. B.2 C. D.110.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()A.至少有一个样本点落在回归直线上B.若所有样本点都在回归直线上,则变量同的相关系数为1C.对所有的解释变量(),的值一定与有误差D.若回归直线的斜率,则变量x与y正相关11.已知,则,不可能满足的关系是()A. B. C. D.12.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.边长为2的正方形经裁剪后留下如图所示的实线围成的部分,将所留部分折成一个正四棱锥.当该棱锥的体积取得最大值时,其底面棱长为________.14.已知等比数列满足公比,为其前项和,,,构成等差数列,则_______.15.曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=____。16.已知变量x,y满足约束条件x-y≤0x+2y≤34x-y≥-6,则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.18.(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.19.(12分)从抛物线C:()外一点作该抛物线的两条切线PA、PB(切点分别为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点在抛物线C上,且(F为抛物线的焦点).(1)求抛物线C的方程;(2)①求证:四边形是平行四边形.②四边形能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.20.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.21.(12分)如图,在四棱锥中,底面,,,,为的中点,是上的点.(1)若平面,证明:平面.(2)求二面角的余弦值.22.(10分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,,且,求BD的长度.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.【详解】当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立,当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件.当m≠0时,则l1∥l2⇒,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,则m=1,即“m=1”是“l1∥l2”的充要条件,故答案为:A【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.2、B【解析】
利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且对应的集合是,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法——集合关系法。设,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。3、B【解析】
利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【详解】为定义在上的奇函数,.当时,,,为奇函数,,由得:或;综上所述:若,则的解集为.故选:.【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.4、C【解析】
根据平面向量基本定理,用来表示,然后利用数量积公式,简单计算,可得结果.【详解】由题可知:点E是中点,点F是中点,所以又所以则故选:C【点睛】本题考查平面向量基本定理以及数量积公式,掌握公式,细心观察,属基础题.5、B【解析】
由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,,,,,为的中点,.,,,异面直线与所成角的余弦值为即为.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.6、B【解析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.【详解】由频率和为1,得,解得,所以成绩在内的频率,所以成绩在内的学生人数.故选:B【点睛】本题主要考查频率直方图的应用,属基础题.7、A【解析】
圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A.8、D【解析】
画出函数,将方程看作交点个数,运用图象判断根的个数.【详解】画出函数令有两解,则分别有3个,2个解,故方程的实数根的个数是3+2=5个故选:D【点睛】本题综合考查了函数的图象的运用,分类思想的运用,数学结合的思想判断方程的根,难度较大,属于中档题.9、C【解析】
根据双曲线的解析式及离心率,可求得的值;得渐近线方程后,由点到直线距离公式即可求解.【详解】双曲线的离心率,则,,解得,所以焦点坐标为,所以,则双曲线渐近线方程为,即,不妨取右焦点,则由点到直线距离公式可得,故选:C.【点睛】本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题.10、D【解析】
对每一个选项逐一分析判断得解.【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.故选D.【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.11、C【解析】
根据即可得出,,根据,,即可判断出结果.【详解】∵;∴,;∴,,故正确;,故C错误;∵,故D正确故C.【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题12、C【解析】
由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意,建立棱锥体积的函数,利用导数求函数的最大值即可.【详解】设底面边长为,则斜高为,即此四棱锥的高为,所以此四棱锥体积为,令,令,易知函数在时取得最大值.故此时底面棱长.故答案为:.【点睛】本题考查棱锥体积的求解,涉及利用导数研究体积最大值的问题,属综合中档题.14、0【解析】
利用等差中项以及等比数列的前项和公式即可求解.【详解】由,,是等差数列可知因为,所以,故答案为:0【点睛】本题考查了等差中项的应用、等比数列的前项和公式,需熟记公式,属于基础题.15、或1【解析】
利用导数的几何意义,可得切线的斜率,以及切线方程,求得切线与轴和的交点,由三角形的面积公式可得所求值.【详解】的导数为,可得切线的斜率为3,切线方程为,可得,可得切线与轴的交点为,,切线与的交点为,可得,解得或。【点睛】本题主要考查利用导数求切线方程,以及直线方程的运用,三角形的面积求法。16、-5【解析】
画出x,y满足的可行域,当目标函数z=x-2y经过点A时,z最小,求解即可。【详解】画出x,y满足的可行域,由x+2y=34x-y=-6解得A-1,2,当目标函数z=x-2y经过点A【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想。需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案不唯一,具体见解析(2)【解析】
(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出的取值范围.【详解】解:(1)因为,所以,①当时,,在上单调递减.②当时,令,则;令,则,所以在单调递增,在上单调递减.综上所述,当时,在上单调递减;当时,在上单调递增,在上单调递减.(2)因为,可知,,令,得.设,则.当时,,在上单调递增,所以在上的值域是,即.当时,没有实根,且,在上单调递减,,符合题意.当时,,所以有唯一实根,当时,,在上单调递增,,不符合题意.综上,,即的取值范围为.【点睛】本题考查利用导数研究函数的单调性和根据恒成立问题求参数范围,还运用了构造函数法,还考查分类讨论思想和计算能力,属于难题.18、(1)见解析;(2)【解析】
(1)设为中点,连结,先证明,可证得,假设不为线段的中点,可得平面,这与矛盾,即得证;(2)以为原点,以分别为轴建立空间直角坐标系,分别求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【详解】(1)设为中点,连结.∴,,又平面,平面,∴.又分别为中点,,又,∴.假设不为线段的中点,则与是平面内内的相交直线,从而平面,这与矛盾,所以为线段的中点.(2)以为原点,由条件面面,∴,以分别为轴建立空间直角坐标系,则,,,,,,.设平面的法向量为所以取,则,.同法可求得平面的法向量为∴,由图知二面角为锐二面角,二面角的余弦值为.【点睛】本题考查了立体几何与空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.19、(1);(2)①证明见解析;②能,.【解析】
(1)根据抛物线的定义,求出,即可求抛物线C的方程;(2)①设,,写出切线的方程,解方程组求出点的坐标.设点,直线AB的方程,代入抛物线方程,利用韦达定理得到点的坐标,写出点的坐标,,可得线段相互平分,即证四边形是平行四边形;②若四边形为矩形,则,求出,即得点Q的坐标.【详解】(1)因为,所以,即抛物线C的方程是.(2)①证明:由得,.设,,则直线PA的方程为(ⅰ),则直线PB的方程为(ⅱ),由(ⅰ)和(ⅱ)解得:,,所以.设点,则直线AB的方程为.由得,则,,所以,所以线段PQ被x轴平分,即被线段CD平分.在①中,令解得,所以,同理得,所以线段CD的中点坐标为,即,又因为直线PQ的方程为,所以线段CD的中点在直线PQ上,即线段CD被线段PQ平分.因此,四边形是平行四边形.②由①知,四边形是平行四边形.若四边形是矩形,则,即,解得,故当点Q为,即为抛物线的焦点时,四边形是矩形.【点睛】本题考查抛物线的方程,考查直线和抛物线的位置关系,属于难题.20、(1)曲线的直角坐标方程为;直线的直角坐标方程为(2)【解析】
(1)由公式可化极坐标方程为直角坐标方程,消参法可化参数方程为普通方程;(2)联立两曲线方程,解方程组得两交点坐标,从而得两点间距离.【详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为(2)据解,得或【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化,属于基础题.21、(1)证明见解析(2)【解析】
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿山生态环境保护与恢复策略考核试卷
- 玻璃纤维增强型隔音材料考核试卷
- 桥式起重机租赁考核试卷
- 2024年度教育机构贷款担保协议3篇
- 2024年度大豆品种改良与种植技术合作合同范本3篇
- 电感器在电力负载平衡中的应用考核试卷
- 爆炸物仓储安全的监测与预警系统考核试卷
- 2024年版基础教育机构股权转让合同3篇
- 2024年度新型租赁模式商品房出租合同范本2篇
- 2024年简化版离婚合同承诺书版B版
- 2022年安徽省公务员录用考试《行测》真题及答案
- 电子技术说课课件
- 安徽恒光聚氨酯材料有限公司年产2.8万吨聚氨酯高新材料及原料项目环境影响报告书
- 5.4.6土钉墙检验批质量验收记录
- 七年级体育与健康 《足球》单元作业设计
- 放射性粒子植入自我评估报告
- LY/T 2450-2015无花果栽培技术规程
- 浙大中控DCS系统介绍(简洁版)
- GB/T 16288-2008塑料制品的标志
- GB/T 14486-2008塑料模塑件尺寸公差
- 2022-2023学年四川省成都市天府新区数学七年级第一学期期末调研试题含解析
评论
0/150
提交评论