版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第【人教】八年级(上册)数学:期末试卷满分:100分限时:120分钟一、选择题(本大题共24分,每小题3分)第1~8题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(3分)冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.2.(3分)KN95型口罩可以保护在颗粒物浓度很高的空间中工作的人不被颗粒物侵害,也可以帮助人们预防传染病.“KN95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m的非油性颗粒.其中,0.0000003用科学记数法表示为()A.3×10﹣6 B.3×10﹣7 C.0.3×10﹣6 D.0.3×10﹣73.(3分)下列计算正确的是()A.a2•a3=a6 B.(a2)3=a6 C.(2a)3=2a3 D.a10÷a2=a54.(3分)下列等式中,从左到右的变形是因式分解的是()A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1 C.x2﹣4=(x+2)(x﹣2) D.x+2=x(1+25.(3分)如图,菊花1角硬币为外圆内正九边形的边缘异形币,则该正九边形的一个内角大小为()A.135° B.140° C.144° D.150°6.(3分)小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB B.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB C.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB D.由“等边对等角”可得∠A′O′B′=∠AOB7.(3分)如果a﹣b=2,那么代数式(a2+bA.2 B.﹣2 C.12 D.8.(3分)在△ABC中,AB≠AC,线段AD,AE,AF分别是△ABC的高,中线,角平分线,则点D,E,F的位置关系为()A.点D总在点E,F之间 B.点E总在点D,F之间 C.点F总在点D,E之间 D.三者的位置关系不确定二、填空题(本大题共24分,每小题3分)9.(3分)使式子3x−2有意义的x取值范围是10.(3分)计算:(3a2+2a)÷a=.11.(3分)如图,在△ABC中,∠ABC=90°,∠ACB=60°,BD⊥AC,垂足为D.若AB=6,则BD的长为.12.(3分)如图,AB⊥BC,AD⊥DC,垂足分别为B,D.只需添加一个条件即可证明△ABC≌△ADC,这个条件可以是.(写出一个即可)13.(3分)某中学要举行校庆活动,现计划在教学楼之间的广场上搭建舞台.已知广场中心有一座边长为b的正方形的花坛.学生会提出两个方案:方案一:如图1,围绕花坛搭建外围为正方形的“回”字形舞台(阴影部分),舞台的面积记为S1;方案二:如图2,在花坛的三面搭建“凹”字形舞台(阴影部分),舞台的面积记为S2;具体数据如图所示,则S1S2.(填“>”,“<”或“=”)14.(3分)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.则∠DBC的大小为.15.(3分)在平面直角坐标系xOy中,点A的坐标为(0,3),点B与点A关于x轴对称,点C在x轴上,若△ABC为等腰直角三角形,则点C的坐标为.16.(3分)图1是小明骑自行车的某个瞬间的侧面示意图,将小明右侧髋关节和车座看作一个整体抽象为A点,将膝盖抽象为B点,将脚跟、脚掌、踏板看作一个整体抽象为C点,将自行车中轴位置记为D点(注:自行车中轴是连接左右两个踏板,使两个踏板绕其旋转的部件),在骑行过程中,点A,D的位置不变,B,C为动点.图2是抽象出来的点和线.若AB=BC=40cm,CD=16cm,小明在骑车前,需调整车座高度,保证在骑行过程中脚总可以踩到踏板,则AD最长为cm.三、解答题(本大题共52分,第17题8分,第18~21题每题5分,第22题6分,第23题5分,第24题6分,第25题7分)17.(8分)(1)计算:(−12)2+2﹣2﹣(2﹣π)(2)分解因式:3x2﹣6xy+3y2.18.(5分)已知3x2﹣x﹣1=0,求代数式(2x+5)(2x﹣5)+2x(x﹣1)的值.19.(5分)如图,C是AB的中点,CD∥BE,CD=BE,连接AD,CE.求证:AD=CE.20.(5分)《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,把人们公认的一些事实列成定义、公理和公设,用它们来研究各种几何图形的性质,从而建立了一套从定义、公理和公设出发,论证命题得到定理的几何学论证方法.在其第一卷中记载了这样一个命题:“在任意三角形中,大边对大角.”请补全上述命题的证明.已知:如图,在△ABC中,AC>AB.求证:.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形)∵AD=AB,∴∠ABD=∠.()(填推理的依据)∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.()(填推理的依据)∴∠ADB>∠C.∴∠ABD>∠C.∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD.∴∠ABC>∠C.21.(5分)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.22.(6分)如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一点,连接BD,EC⊥AC,且AE=BD,AE与BC交于点F.(1)求证:CE=AD;(2)当AD=CF时,求证:BD平分∠ABC.23.(5分)小明在学习有关整式的知识时,发现一个有趣的现象:对于关于x的多项式x2﹣2x+3,由于x2﹣2x+3=(x﹣1)2+2,所以当x﹣1取任意一对互为相反数的数时,多项式x2﹣2x+3的值是相等的.例如,当x﹣1=±1,即x=2或0时,x2﹣2x+3的值均为3;当x﹣1=±2,即x=3或﹣1时,x2﹣2x+3的值均为6.于是小明给出一个定义:对于关于x的多项式,若当x﹣t取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于x=t对称.例如x2﹣2x+3关于x=1对称.请结合小明的思考过程,运用此定义解决下列问题:(1)多项式x2﹣4x+6关于x=对称;(2)若关于x的多项式x2+2bx+3关于x=3对称,求b的值;(3)整式(x2+8x+16)(x2﹣4x+4)关于x=对称.24.(6分)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E,连接AD,AE,CE,DE.(1)如图1,当点D为线段BC的中点时,求证:△ADE是等边三角形;(2)当点D在线段BC的延长线上时,连接BE,F为线段BE的中点,连接CF.根据题意在图2中补全图形,用等式表示线段AD与CF的数量关系,并证明.25.(7分)在平面直角坐标系xOy中,直线l为过点M(m,0)且与x轴垂直的直线.对某图形上的点P(a,b)作如下变换:当b≥|m|时,作出点P关于直线l的对称点P1,称为Ⅰ(m)变换;当b<|m|时,作出点P关于x轴的对称点P2,称为Ⅱ(m)变换.若某个图形上既有点作了Ⅰ(m)变换,又有点作了Ⅱ(m)变换,我们就称该图形为m﹣双变换图形.例如,已知A(1,3),B(2,﹣1),如图1所示,当m=2时,点A应作Ⅰ(2)变换,变换后A1的坐标是(3,3);点B作Ⅱ(2)变换,变换后B1的坐标是(2,1).请解决下面的问题:(1)当m=0时,①已知点P的坐标是(﹣1,1),则点P作相应变换后的点的坐标是;②若点P(a,b)作相应变换后的点的坐标为(﹣1,2),求点P的坐标;(2)已知点C(﹣1,5),D(﹣4,2),①若线段CD是m﹣双变换图形,则m的取值范围是;②已知点E(m,m)在第一象限,若△CDE及其内部(点E除外)组成的图形是m﹣双变换图形,且变换后所得图形记为G,直接写出所有图形G所覆盖的区域的面积.
参考答案与试题解析一、选择题1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.【分析】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000003用科学记数法表示为:3×10﹣7.故选:B.3.【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A、a2•a3=a5,故本选项不合题意;B、(a2)3=a6,故本选项符合题意;C、(2a)3=8a3,故本选项不合题意;D、a10÷a2=a8,故本选项不合题意;故选:B.4.【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【解答】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、是整式的乘法,不是因式分解,故此选项不符合题意;C、把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.故选:C.5.【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=1260°÷9=140°.故选:B.6.【分析】先利用作法得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法对各选项进行判断.【解答】解:由作图得OD=OC=OD′=OC′,CD=C′D′,则根据“SSS”可判断△C′O′D′≌△COD.故选:A.7.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=a2=(a−b)2=a﹣b,当a﹣b=2时,原式=2.故选:A.8.【分析】延长AE至点H,使EH=AE,连接CH,证明△AEB≌△HEC,根据全等三角形的性质得到AB=CH,∠BAE=∠H,根据三角形的高、中线、角平分线的定义解答即可.【解答】解:假设AB<AC,如图所示,延长AE至点H,使EH=AE,连接CH,在△AEB和△HEC中,AE=HE∠AEB=∠HEC∴△AEB≌△HEC(SAS),∴AB=CH,∠BAE=∠H,∵AB<AC,∴CH<AC,∴∠CAH<∠H,∴∠CAH<∠BAE,∴点F总在点D,E之间,故选:C.二、填空题9.【分析】根据分式的分母不等于零分式有意义,可得答案.【解答】解:要使式子3x−2x﹣2≠0.解得x≠2,故答案为:x≠2.10.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(3a2+2a)÷a=3a2÷a+2a÷a=3a+2.故答案为:3a+2.11.【分析】利用含30°的直角三角形的性质解答即可.【解答】解:在△ABC中,∠ABC=90°,∠ACB=60°,∴∠BAC=90°﹣∠ACB=90°﹣60°=30°,∵BD⊥AC,∴∠ADB=90°,∵AB=6,∴BD=12AB故答案为:3.12.【分析】由全等三角形的判定定理可求解.【解答】解:若添加AB=AD,且AC=AC,由“HL”可证Rt△ABC≌Rt△ADC;若添加BC=CD,且AC=AC,由“HL”可证Rt△ABC≌Rt△ADC;若添加∠BAC=∠DAC,且AC=AC,由“AAS”可证Rt△ABC≌Rt△ADC;若添加∠BCA=∠DCA,且AC=AC,由“AAS”可证Rt△ABC≌Rt△ADC;故答案为:AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD(答案不唯一).13.【分析】根据正方形和矩形的面积公式即可得到结论.【解答】解:方案一:如图1,S1=a2﹣b2,方案二:如图2,S2=(a﹣b)(a2+b+a2)﹣b2=(a﹣b)(a﹣b)﹣b2=a2﹣b2﹣b2=a∵S1﹣S2=a2﹣b2﹣(a2﹣2b2)=a2﹣b2﹣a2+2b2=b2>0,∴S1>S2.故答案为:>.14.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ABC及∠ACB的度数,再根据线段垂直平分线的性质求出∠ABD的度数即可进行解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB=70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.15.【分析】由轴对称的性质可求点B坐标,由等腰直角三角形的性质可求OC=OA=3,即可求解.【解答】解:∵点A的坐标为(0,3),点B与点A关于x轴对称,∴点B(0,﹣3),∴OA=OB=3,又∵∠ACB=90°,AC=BC,∴OC=OA=OB=3,∴点C(3,0)或(﹣3,0),故答案为:(3,0)或(﹣3,0).16.【分析】根据已知条件得到当AB+BC=AD+CD时,AD最长,根据线段的和差即可得到结论.【解答】解:∵在骑行过程中脚总可以踩到踏板,∴当AB+BC=AD+CD时,AD最长,则,AD最长为AB+BC﹣CD=40+40﹣16=64(cm),故答案为:64.三、解答题17.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=1=1=−1(2)原式=3(x2﹣2xy+y2)=3(x﹣y)2.18.【分析】首先利用多项式乘以多项式、多项式乘以单项式进行计算,然后再合并同类项,化简后,再代入求值即可.【解答】解:原式=4x2﹣25+2x2﹣2x=6x2﹣2x﹣25,∵3x2﹣x﹣1=0,∴3x2﹣x=1.∴原式=2(3x2﹣x)﹣25=2×1﹣25=﹣23.19.【分析】根据平行线的性质和中点的定义以及全等三角形的判定和性质解答即可.【解答】证明:∵C是AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B.在△ACD和△CBE中,AC=CB∠ACD=∠B∴△ACD≌△CBE(SAS),∴AD=CE.20.【分析】根据文字题目的要求写出已知,求证,利用等腰三角形的性质以及三角形的我觉得性质解决问题即可.【解答】已知:如图,在△ABC中,AC>AB.求证:∠ABC>∠C.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形).∵AD=AB,∴∠ABD=∠ADB(等边对等角),∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.(三角形的外角等于与它不相邻的两个内角的和),∴∠ADB>∠C,∴∠ABD>∠C,∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD,∴∠ABC>∠C.故答案为:∠ABC>∠C,ADB,等边对等角,三角形的外角等于与它不相邻的两个内角的和.21.【分析】设橘子每千克的价格为x元,则香蕉每千克的价格为70%x元,根据题意可得等量关系:2800元所购买的香蕉的重量﹣2500元所购买的橘子的重量=150,再列出方程,解出x的值即可.【解答】解:设橘子每千克的价格为x元,则香蕉每千克的价格为70%x元.根据题意,得280070%x解得x=10,检验:当x=10时,70%x≠0.所以原分式方程的解为x=10且符合题意.答:橘子每千克的价格为10元.22.【分析】(1)根据HL证明Rt△CAE与Rt△ABD全等,进而解答即可;(2)根据全等三角形的性质和角之间的关系解答即可.【解答】证明:(1)∵EC⊥AC,∠BAC=90°,∴∠ACE=∠BAC=90°,在Rt△CAE与Rt△ABD中,AE=BDCA=AB∴Rt△CAE≌Rt△ABD(HL),∴CE=AD.(2)由(1)得Rt△CAE≌Rt△ABD,∴∠EAC=∠ABD,∠E=∠ADB.由(1)得CE=AD,∵AD=CF,∴CE=CF.∴∠CFE=∠E,∵∠CFE=∠AFB,∴∠AFB=∠E.∵∠E=∠ADB,∴∠AFB=∠ADB,∵∠AGB=∠EAC+∠ADB,∠AGB=∠DBC+∠AFB,∴∠EAC=∠DBC.∵∠EAC=∠BAD,∴∠BAD=∠DBC,∴BD平分∠ABC.23.【分析】(1)对多项式进行配方,根据新定义判断即可;(2)求出x2+2bx+3的对称轴,令对称轴=3即可;(3)对多项式进行配方,根据新定义判定即可.【解答】解:(1)x2﹣4x+6=(x﹣2)2+2,则多项式关于x=2对称,故答案为:2;(2)∵x2+2bx+3=(x+b)2+3﹣b2,∴关于x的多项式x2+2bx+3关于x=﹣b对称,∴﹣b=3,∴b=﹣3;(3)原式=(x+4)2(x﹣2)2=[(x+4)(x﹣2)]2=(x2+2x﹣8)2=[(x+1)2﹣9]2=[(x+1+3)(x+1﹣3)]2=(x+4)2(x﹣2)2,当x=﹣4和2时,原式=0,∴关于x=﹣1对称,故答案为:﹣1.24.【分析】(1)根据对称的性质得到AD=AE,∠DAC=∠EAC,根据等边三角形的性质得到AB=AC,∠BAC=60°.求得∠DAC=1(2)延长CF到点G,使GF=CF,连接BG.根据线段中点的定义得到BF=EF.根据全等三角形的性质得到GB=CE,∠G=∠FCE.由对称的性质得到CD=CE,∠ACD=∠ACE=120°.根据全等三角形的性质即可得到结论.【解答】(1)证明:∵点D,E关于直线AC对称,∴AD=AE,∠DAC=∠EAC,∵△ABC是等边三角形,∴AB=AC,∠BAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年极限运动项目立项申请报告
- 员工辞职报告(集锦15篇)
- 2024-2025学年芜湖市繁昌县三上数学期末综合测试试题含解析
- 2024-2025学年铜官山区数学三年级第一学期期末调研试题含解析
- 2024年农产品区域公用品牌推广服务合同3篇
- 2024年标准租赁物品回购合同范本版B版
- 父与子读后感集合15篇
- 银行岗位竞聘演讲稿模板汇编五篇
- 四年级上册语文教学计划模板十篇
- 养成工作计划3篇
- DB41T2781-2024公路大厚度水泥稳定碎石基层施工技术规程
- 2024版玻璃幕墙工程材料采购合同2篇
- 2025年妇产科工作计划
- (T8联考)2025届高三部分重点中学12月第一次联考 生物试卷(含答案详解)
- JGJ46-2024 建筑与市政工程施工现场临时用电安全技术标准
- 报关税费代缴服务合同
- 仅销售预包装食品经营者备案信息采集表
- 小学体育新课标培训
- 信息化工程建设项目可行性研究报告编制要求
- 2024年应急预案知识考试题库及答案(共60题)
- Python试题库(附参考答案)
评论
0/150
提交评论