初中数学中心对称图形专题训练50题(含答案)_第1页
初中数学中心对称图形专题训练50题(含答案)_第2页
初中数学中心对称图形专题训练50题(含答案)_第3页
初中数学中心对称图形专题训练50题(含答案)_第4页
初中数学中心对称图形专题训练50题(含答案)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第=page11页,共=sectionpages33页试卷第=page11页,共=sectionpages33页初中数学中心对称图形专题训练50题含参考答案一、单选题1.在平面直角坐标系中,点(,6)关于原点对称的点坐标是(

)A.(,2) B.(2,) C.(2,6) D.(,)2.下列图标中,既是中心对称又是轴对称的图标是(

)A. B. C. D.3.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在(

)A.(2,5) B.(-3,2) C.(3,-2) D.(3,2)4.我国已经进入5G时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是(

)A. B.C. D.5.下列所给图形中,既是轴对称图形又是中心对称图形的是(

)A. B. C. D.6.下列图形中,属于中心对称图形的是()A. B. C. D.7.下列图形中,既是轴对称图形,又是中心对称图形的是(

)A.正三角形 B.正五边形 C.正六边形 D.正七边形8.下列图案中,既是轴对称图形,又是中心对称图形的是()A.等边三角形 B.平行四边形 C.矩形 D.直角三角形9.下列图案,既是轴对称图形又是中心对称图形的个数是(

).A.1 B.2 C.3 D.410.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是(

)A. B. C. D.11.在平行四边形,矩形,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个 B.4个 C.5个 D.6个12.在下列四个图形中,是中心对称图形的是()A. B. C. D.13.这四个汽车标志图中,既是中心对称图形又是轴对称图形的是()A. B.C. D.14.下列①平行四边形,②矩形,③菱形,④正方形四个图形中,是中心对称图形,但不是轴对称图形是(

)A.① B.② C.③ D.④15.下列图形中,可以看作是中心对称图形的有()A.0个 B.1个 C.2个 D.3个16.下列图案中不是中心对称图形的是()A. B. C. D.17.下列图形中,是中心对称图形,但不是轴对称图形的是(

)A.(A) B.(B) C.(C) D.(D)18.下列图案中既是轴对称又是中心对称图形的是(

)A. B. C. D.19.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A. B.C. D.二、填空题20.平面直角坐标系内一点,关于原点对称的点的坐标为____________.21.在平面直角坐标系中点M(2,﹣4)关于原点对称的点的坐标为_____.22.在平面直角坐标系中,点关于x轴的对称点是_____;关于y轴的对称点是_____;关于原点的对称点是_____.23.点与点关于原点对称,则点的坐标为__________.24.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=_____.25.将点绕原点O旋转180°后P点的对应点坐标为______.26.已知点与点关于原点对称,则__.27.点A(-1,2)关于原点中心对称点的坐标是___________28.在平面直角坐标系中,已知点和点关于原点对称,则________.29.在平面直角坐标系中,若点与点关于原点对称,则__________.30.在四张完全相同的卡片上,分别画有:线段、正三角形、矩形、圆,如果从中随机抽取一张,那么卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是____.31.点A(-3,4)关于x轴对称的点的坐标为__,关于y轴对称的点的坐标为__,关于原点对称的坐标为__.32.已知点与点关于原点对称,则的值为____________________.33.已知实数a、b是方程的两根,,则点关于原点的对称点Q的坐标是___________.34.下列图形中,其中是中心对称图形有_____个.①圆;②平行四边形;③长方形;④等腰三角形.35.在直角坐标系中,点(﹣1,2)关于原点对称的点的坐标是___.36.点关于轴对称的点的坐标是_____;点关于原点对称的点的坐标是_____.37.平面直角坐标系中,点与点关于原点对称,则=_____.38.如图,在平面直角坐标系中,是边长为1的等边三角形,作与关于点成中心对称,再作与关于点成中心对称,继续作与关于点成中心对称,….按此规律作下去,则的顶点的坐标是__________.39.如图,C是线段AB的中点,B是线段CD的中点,线段AB的对称中心是点__,点C关于点B成中心对称的点是点__.三、解答题40.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于原点成中心对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.41.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点C的坐标为.(1)把向上平移5个单位后得到对应的,画出;(2)以原点O为对称中心,画出与关于原点O对称的.42.利用图甲所示的地板砖各两块,在图乙(1)中铺成一个只是轴对称的图形;在图乙(2)铺成一个只是中心对称的图形,在图乙(3)中铺成既是轴对称图形,又是中心对称的图形.43.如图:在网格中按题目要求画图(1)把先向右平移5格,再向上平移3格得到;(2)作关于原点对称的图形得到.44.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△ABC关于点O的中心对称图形△A2B2C2;(3)若将△A1B1C1绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标:_________.45.在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点C的坐标为(0,1),请按要求画图与作答:(1)请画出△ABC关于原点成中心对称的△A1B1C1;(2)请画出△ABC绕着点C顺时针旋转90°后的△A2B2C2;(3)求△A2B2C2的面积.46.如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.47.如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB扫过的面积.48.如图,已知△ABC的三个顶点坐标为A(-4,3)、B(-6,0)、C(-1,0).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)若将点B绕坐标原点O顺时针旋转90°,请直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.49.在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.答案第=page11页,共=sectionpages22页答案第=page11页,共=sectionpages22页参考答案:1.B【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】点A(-2,6)关于原点对称的点的坐标是(2,-6),故选:B.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.2.A【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.既是中心对称又是轴对称,符合题意;B.不是中心对称,是轴对称,不符合题意;C.不是中心对称,是轴对称,不符合题意;D.既不是中心对称也不是轴对称,不符合题意;故选:A.【点睛】本题考查了轴对称图形与中心对称图形的识别,牢记轴对称图形和中心对称图形的概念是解答本题的关键.3.A【详解】∵P(m,m-n)与点Q(-2,3)关于原点对称,∴m=2,n=5,∴点P的坐标为(2,5).故选A.4.C【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,也是中心对称图形,故本选项不合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不合题意;C.是中心对称图形,但不是轴对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.5.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形又是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.D【分析】根据中心对称图形的概念进行求解即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形的概念,解题的关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.C【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,不符合题意;C、矩形是轴对称图形,也是中心对称图形,符合题意;D、直角三角形不一定是轴对称图形,不是中心对称图形,不符合题意.故选C.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选C.【点睛】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.A【分析】根据中心对称图形和轴对称图形的概念,即可得出正确选项.【详解】解:A.此图既是轴对称图形又是中心对称图形,故此选项符合题意;B.此图不是中心对称图形,是轴对称图形,故此选项不合题意;C.此图是中心对称图形,不是轴对称图形,故此选项不合题意;D.此图不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】本题考查中心对称图形和轴对称图形的概念,属于基础题,熟练掌握概念是本题的关键.11.A【详解】试题分析:根据轴对称图形与中心对称图形的概念求解.解:既是轴对称图形又是中心对称图形的图形为:矩形、圆,正方形,共3个.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.D【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是轴对称图形,不是中心对称图形,故本选项错误,C、不是中心对称图形,故本选项错误,D、是中心对称图形,故本选项正确.故选D.13.C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,也是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、平行四边形不是轴对称图形,是中心对称图形,故此选项正确;B、矩形既是轴对称图形,又是中心对称图形,故此选项错误;C、菱形既是轴对称图形,也是中心对称图形,故此选项错误;D、正方形既是轴对称图形,也是中心对称图形,故此选项错误.故答案为:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.15.C【详解】根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.解:①、旋转180°,与原图形不能够重合,不是中心对称图形,故错误;②、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;③、旋转180°,能与原图形能够完全重合,不是中心对称图形,故正确;④、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;综上可得有两个正确.故选C.此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.16.D【分析】根据中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,对四个选项分别进行判断,即可得出结论.【详解】解:A、B、C三个选项的图形都是中心对称图形,D不是中心对称图形.故选:D.【点睛】本题考查了中心对称图形,掌握中心对称图形的定义并能运用定义对图形进行准确判断是解题的关键.17.B【详解】分析:根据轴对称图形与中心对称图形的概念进行判断即可.详解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项正确;C、是轴对称图形,也是中心对称图形,故选项错误;D、是轴对称图形,不是中心对称图形,故选项错误.故选B.点睛:本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.18.B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.D【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分能够完全重合.20.(-5,3).【详解】试题分析:关于原点对称的点的坐标横、纵坐标均互为相反数,所以P(5,-3)关于原点对称点的坐标是(-5,3).故答案为(-5,3).考点:关于原点对称点的坐标.21.【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解.【详解】解:点M(2,﹣4)关于原点对称的点的坐标为故答案为:【点睛】本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键.22.

【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可直接写出答案.【详解】解:在平面直角坐标系中,点关于x轴的对称点是;关于y轴的对称点是;关于原点的对称点是.故答案为:;;.【点睛】此题主要考查了关于x轴、y轴、以及关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.23.【详解】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),所以点Q的坐标为(−2,1).,故答案为24.1【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b.【详解】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a=4且b=-3,∴a+b=1.故答案为125.【分析】根据两点关于原点的对称的坐标特征:横纵坐标均互为相反数,即可求解.【详解】点绕原点O旋转180°后,P点的对应点与点P关于原点对称,则其坐标为.故答案为:.【点睛】本题考查了平面直角坐标系中关于原点对称的两点的坐标特征,掌握这一特征是关键.26.3【分析】直接利用关于原点对称点的性质即可得出答案.【详解】解:点与点关于原点对称,.故答案为:3【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.【详解】根据关于原点成中心对称的两个点的横、纵坐标互为相反数即可得出答案.解:点A(-1,2)关于原点中心对称点的坐标是(1,-2).故答案为(1,-2).28.-1【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案.【详解】∵点和点关于原点对称,∴a=-3,b=2,∴a+b=-3+2=-1,故答案为:-1.【点睛】此题考查原点对称点的性质,熟记性质并运用解题是关键.29.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=-4,b=-3,则ab=12.故答案为:12.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.30.【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对线段、正三角形、矩形、圆进行判断,然后求概率即可.【详解】解:由题意知,既是中心对称图形又是轴对称图形的为线段、矩形、圆,∴卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是,故答案为:.【点睛】本题考查了中心对称图形,轴对称图形的定义,概率等知识.解题的关键在于熟练掌握中心对称图形,轴对称图形的定义.31.

(﹣3,﹣4),

(3,4),

(3,﹣4)【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【详解】∵在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,∴点A关于x轴对称的点的坐标是(﹣3,﹣4),∵关于y轴对称时,横坐标为相反数,纵坐标不变,∴点A关于y轴对称的点的坐标是(3,4),∵关于原点对称时,横纵坐标都为相反数,∴点A关于原点对称的点的坐标是(3,﹣4).故答案为(﹣3,﹣4),(3,4),(3,﹣4).【点睛】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中.32.【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数求得的值,进而求得的值.【详解】解:点与点关于原点对称,故答案为:【点睛】本题考查了关于原点对称的点的坐标特征,有理数的乘法,掌握关于原点对称的点的坐标特征是解题的关键.33.【分析】先利用因式分解法解一元二次方程求出的值,进而利用关于原点对称点的坐标性质得出即可.【详解】∵实数a、b是方程的两根,,,,,∴点关于原点的对称点Q的坐标是,故答案为:.【点睛】本题考查了关于原点对称的点的坐标和解一元二次方程-因式分解法,熟练掌握知识点是解题的关键.34.3【分析】根据中心对称图形的特点进行分析即可.【详解】解:①圆;②平行四边形;③长方形是中心对称图形,共3个,④等腰三角形不是中心对称图形.故答案为:3.【点睛】本题考查中心对称图形的识别,熟练掌握中心对称图形的特点是解题关键.35.【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,据此分析即可【详解】点(﹣1,2)关于原点对称的点的坐标是故答案为:【点睛】本题考查了关于原点对称的点的坐标的特点,掌握平面直角坐标系中对称点的坐标特点是解题的关键.36.

(1,2)

(﹣1,2)【详解】解:点P(m,n)关于x轴对称点的坐标P′(m,﹣n),关于原点对称点的坐标P″(﹣m,﹣n);所以点A(1,﹣2)关于x轴对称的点的坐标为(1,2),关于原点对称的坐标是(﹣1,2).故答案为:(1,2);(﹣1,2)37.﹣1【分析】根据原点对称的点,横坐标和纵坐标都互为相反数,即可得到答案.【详解】解:∵P与Q关于原点对称,故3=-(b+2),1-a=-3,解得:a=4,b=-5,∴a+b=-1,故答案为-1.【点睛】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.38.【分析】首先根据是边长为1的等边三角形,可得A1的坐标为,B1的坐标为(1,0);然后根据中心对称的性质,分别求出点A2、A3的坐标各是多少;最后总结出An的坐标的规律,求出A2n+1的坐标是多少即可.【详解】解:∵是边长为1的等边三角形,∴A1的坐标为:,B1的坐标为:(1,0),∵与关于点成中心对称,∴点A2与点A1关于点B1成中心对称,∵,∴点A2的坐标是:,∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵∴点A3的坐标是:,∴An的横坐标是:n−,当n为奇数时,An的纵坐标是:,当n为偶数时,An的纵坐标是:,∵2022是偶数,∴的坐标是,故答案为:.【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出An的横坐标和纵坐标是解题的关键.39.

C

D【详解】根据中心对称图形的对称中心的定义,点C是线段AB的中点,点B是线段CD的中点,线段AB的对称中心是点C;点C关于点B成中心对称的对称点是点D.故答案为C;D.40.(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).【分析】(1)根据网格结构找出点A、B、C关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B的对应点的坐标;(3)分AB、BC、AC是平行四边形的对角线三种情况解答.【详解】解:(1)如图所示△A′B′C′即为所求;(2)如图所示,△即为所求,B′′(0,-6);(3)D(-7,3)或(-5,-3)或(3,3).当以BC为对角线时,点D3的坐标为(-5,-3);当以AB为对角线时,点D2的坐标为(-7,3);当以AC为对角线时,点D1坐标为(3,3).【点睛】本题考查了利用旋转变换作图,平行四边形的对边相等,熟记性质以及网格结构准确找出对应点的位置是解题的关键.41.(1)见解析;(2)见解析【分析】(1)让的各顶点分别先向右平移5个单位,再顺次连接各顶点,即可得到新的△A1B1C1.(2)作A1、B1、C1三点关于原点的对应点,再顺次连接.【详解】即、是所求作的三角形.【点睛】此题主要考查了图形的平移和作中心对称图形,解答的关键点是准确作出三个顶点的对应点.42.图案见解析.【分析】根据中心对称图形以及轴对称图形的定义,结合已知图像画出图形即可求解.【详解】解:如图,只是轴对称的图形,如图,只是中心对称的图形,如图,既是轴对称图形,又是中心对称的图形.【点睛】掌握好中心对称图形与轴对称图形设计图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.43.(1)见解析(2)见解析【分析】(1)根据平移规则,先找到点A、B、C平移后的点位置,再连线即可得到;(2)先找到点A、B、C关于原点对称的点,再连线即可得到.(1)解:如图所示:即为所求:(2)解:如图所示:即为所求:【点睛】本题考查坐标系下的平移和旋转作图.熟练掌握找点,描点,连线的作图方法是解题的关键.44.(1)见解析(2)见解析(3)【分析】(1)先根据平移的定义分别画出点,再顺次连接即可得;(2)先根据中心对称的定义分别画出点,再顺次连接即可得;(3)先根据平移的性质、中心对称的性质求出点的坐标,再求出它们的中点的坐标判断出与是关于中点的中心对称图形,由此即可得.【详解】(1)解:如图,即为所求.(2)解:如图,即为所求.(3)解:由图可知,点的坐标分别为,,,,即,,的中点的坐标均为,与是以点为对称中心的中心对称图形,则所求的旋转中心的坐标为,故答案为:.【点睛】本题考查了平移作图、画中心对称图形、求旋转中心的坐标,熟练掌握平移和中心对称图形的画法是解题关键.45.(1)见解析;(2)见解析;(3)2.5【分析】(1)直接利用关于点对称的性质得出对应点的位置即可解答;(2)直接利用旋转的性质得出对应点的位置即可解答;(3)利用△A2B2C2的面积等于所在矩形的面积减去周围三角形的面积即可解答.(1)解:如图所示:△A1B1C1,即为所求;(2)解:如图所示:△A2B2C2,即为所求;(3)解△A2B2C2的面积为:2×3﹣×1×2﹣×1×2﹣×1×3=2.5.【点睛】本题考查中心对称的性质、坐标与图形变化-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论