中考数学一轮考点复习精讲精练专题16 三角形相似【考点巩固】(解析版)_第1页
中考数学一轮考点复习精讲精练专题16 三角形相似【考点巩固】(解析版)_第2页
中考数学一轮考点复习精讲精练专题16 三角形相似【考点巩固】(解析版)_第3页
中考数学一轮考点复习精讲精练专题16 三角形相似【考点巩固】(解析版)_第4页
中考数学一轮考点复习精讲精练专题16 三角形相似【考点巩固】(解析版)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题16三角形相似(时间:60分钟,满分120分)一、填空题(每题3分,共30分)1.已知三个数2,SKIPIF1<0,4如果再添加一个数,使这四个数成比例,则添加的数是().A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0或SKIPIF1<0【答案】D【分析】运用比例基本性质,将所添的数当作比例式a:b=c:d中的任何一项,进行计算即可,【详解】设添加的这个数是SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0,解得SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,解得SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,解得SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,解得SKIPIF1<0.故选D.2.(2022·山东临沂)如图,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0再建立方程即可.【详解】解:SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0解得:SKIPIF1<0经检验符合题意故选C3.如图,点SKIPIF1<0是线段SKIPIF1<0的黄金分割点(SKIPIF1<0),下列结论错误的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值SKIPIF1<0叫做黄金比.【详解】解:∵AC>BC,

∴AC是较长的线段,

根据黄金分割的定义可知:AB:AC=AC:BC,故A正确,不符合题意;

AC2=AB•BC,故B错误,SKIPIF1<0,故C正确,不符合题意;SKIPIF1<0,故D正确,不符合题意.故选B.4.(2022·重庆)如图,SKIPIF1<0与SKIPIF1<0位似,点SKIPIF1<0为位似中心,相似比为SKIPIF1<0.若SKIPIF1<0的周长为4,则SKIPIF1<0的周长是(

)A.4 B.6 C.9 D.16【答案】B【分析】根据周长之比等于位似比计算即可.【详解】设SKIPIF1<0的周长是x,∵SKIPIF1<0与SKIPIF1<0位似,相似比为SKIPIF1<0,SKIPIF1<0的周长为4,∴4:x=2:3,解得:x=6,故选:B.5.(2022·湖南湘潭)在SKIPIF1<0中(如图),点SKIPIF1<0、SKIPIF1<0分别为SKIPIF1<0、SKIPIF1<0的中点,则SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】证出SKIPIF1<0是SKIPIF1<0的中位线,由三角形中位线定理得出SKIPIF1<0,SKIPIF1<0,证出SKIPIF1<0,由相似三角形的面积比等于相似比的平方即可得出结论.【详解】解:SKIPIF1<0点SKIPIF1<0、SKIPIF1<0分别为SKIPIF1<0、SKIPIF1<0的中点,SKIPIF1<0是SKIPIF1<0的中位线,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故选:D.6.(2022·贵州贵阳)如图,在SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0边上的点,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0与SKIPIF1<0的周长比是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先证明△ACD∽△ABC,即有SKIPIF1<0,则可得SKIPIF1<0,问题得解.【详解】∵∠B=∠ACD,∠A=∠A,∴△ACD∽△ABC,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴△ADC与△ACB的周长比1:2,故选:B.8.(2022·湖北十堰)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】求出△AOB和△COD相似,利用相似三角形对应边成比例列式计算求出AB,再根据外径的长度解答.【详解】解:∵OA:OC=OB:OD=3,∠AOB=∠COD,∴△AOB∽△COD,∴AB:CD=3,∴AB:3=3,∴AB=9(cm),∵外径为10cm,∴19+2x=10,∴x=0.5(cm).故选:B.9.(2022·山东威海)由12个有公共顶点O的直角三角形拼成如图所示的图形,∠AOB=∠BOC=∠COD=…=∠LOM=30°.若S△AOB=1,则图中与△AOB位似的三角形的面积为(

)A.(SKIPIF1<0)3 B.(SKIPIF1<0)7 C.(SKIPIF1<0)6 D.(SKIPIF1<0)6【答案】C【分析】根据题意得出A、O、G在同一直线上,B、O、H在同一直线上,确定与△AOB位似的三角形为△GOH,利用锐角三角函数找出相应规律得出OG=SKIPIF1<0,再由相似三角形的性质求解即可.【详解】解:∵∠AOB=∠BOC=∠COD=…=∠LOM=30°∴∠AOG=180°,∠BOH=180°,∴A、O、G在同一直线上,B、O、H在同一直线上,∴与△AOB位似的三角形为△GOH,设OA=x,则OB=SKIPIF1<0,∴OC=SKIPIF1<0,∴OD=SKIPIF1<0,…∴OG=SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,故选:C.10.(2022·四川眉山)如图,四边形SKIPIF1<0为正方形,将SKIPIF1<0绕点SKIPIF1<0逆时针旋转SKIPIF1<0至SKIPIF1<0,点SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在同一直线上,SKIPIF1<0与SKIPIF1<0交于点SKIPIF1<0,延长SKIPIF1<0与SKIPIF1<0的延长线交于点SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.以下结论:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中正确结论的个数为(

)A.1个 B.2个 C.3个 D.4个【答案】D【分析】利用旋转的性质,正方形的性质,可判断①正确;利用三角形相似的判定及性质可知②正确;证明SKIPIF1<0,得到SKIPIF1<0,即SKIPIF1<0,利用SKIPIF1<0是等腰直角三角形,求出SKIPIF1<0,再证明SKIPIF1<0即可求出SKIPIF1<0可知③正确;过点E作SKIPIF1<0交FD于点M,求出SKIPIF1<0,再证明SKIPIF1<0,即可知④正确.【详解】解:∵SKIPIF1<0旋转得到SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0为正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在同一直线上,∴SKIPIF1<0,∴SKIPIF1<0,故①正确;∵SKIPIF1<0旋转得到SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故②正确;设正方形边长为a,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,故③正确;过点E作SKIPIF1<0交FD于点M,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故④正确综上所述:正确结论有4个,故选:D二、填空题(每题4分,共24分)11.若SKIPIF1<0≠0,则SKIPIF1<0=__.【答案】SKIPIF1<0【分析】设SKIPIF1<0=k,可得a=2k,b=3k,c=4k,再代入求值即可得到答案.【详解】设SKIPIF1<0=k,则a=2k,b=3k,c=4k,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.故答案为:SKIPIF1<012.如图,∠DAB=∠CAE,请补充一个条件:________________,使△ABC∽△ADE.【答案】∠D=∠B(答案不唯一)【分析】根据相似三角形的判定定理再补充一个相等的角即可.【详解】解:∵∠DAB=∠CAE

∴∠DAE=∠BAC

∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时△ABC∽△ADE.

故答案为:∠D=∠B(答案不唯一).13.(2022·北京)如图,在矩形SKIPIF1<0中,若SKIPIF1<0,则SKIPIF1<0的长为_______.【答案】1【分析】根据勾股定理求出BC,以及平行线分线段成比例进行解答即可.【详解】解:在矩形SKIPIF1<0中:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故答案为:1.14.如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边SKIPIF1<0,SKIPIF1<0,测得边DF离地面的高度SKIPIF1<0,SKIPIF1<0,则树AB的高度为_______cm.【答案】420【分析】先判定△DEF和△DBC相似,然后根据相似三角形对应边成比例列式求出BC的长,再加上AC即可得解.【详解】解:在△DEF和△DBC中,∠D=∠D,∠DEF=∠DCB,∴△DEF∽△DCB,∴SKIPIF1<0,解得BC=300cm,∵SKIPIF1<0,∴AB=AC+BC=120+300=420m,即树高420m.故答案为:420.15.(2022·四川宜宾)如图,SKIPIF1<0中,点E、F分别在边AB、AC上,SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0______.【答案】SKIPIF1<0【分析】易证△AEF∽△ABC,得SKIPIF1<0即SKIPIF1<0即可求解.【详解】解:∵∠1=∠2,∠A=∠A,∴△AEF∽△ABC,∴SKIPIF1<0,即SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴EF=SKIPIF1<0,故答案为:SKIPIF1<0.16.(2022·湖北鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为_____.【答案】SKIPIF1<0【分析】如图所示,过点E作EF⊥AB于F,先解直角三角形求出AF,EF,从而求出BF,利用勾股定理求出BE的长,证明△ABD≌△BCE得到∠BAD=∠CBE,AD=BE,再证明△BDP∽△ADB,得到SKIPIF1<0,即可求出BP,PD,从而求出AP,由此即可得到答案.【详解】解:如图所示,过点E作EF⊥AB于F,∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BAC=∠BCE=60°,∵CE=BD=2,AB=AC=6,∴AE=4,∴SKIPIF1<0,∴BF=4,∴SKIPIF1<0,又∵BD=CE,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,AD=BE,又∵∠BDP=∠ADB,∴△BDP∽△ADB,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴△ABP的周长SKIPIF1<0,故答案为:SKIPIF1<0.三、简答题(共46分)17.(7分)如图,已知∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.【答案】见解析【分析】根据两组对应边成比例且夹角相等的两个三角形相似.可证明三角形相似.【详解】证明:∵AB=20.4,AC=48,AE=17,AD=40,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0又∵∠BAC=∠EAD,∴△ABC∽△AED.18.(7分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知SKIPIF1<0ABC三个顶点分别为A(﹣2,1)、B(1,2),C(﹣4,4).(1)画出SKIPIF1<0ABC关于x轴对称的SKIPIF1<0A1B1C1;(2)以原点O为位似中心,在x轴的下方画出SKIPIF1<0A2B2C2,使SKIPIF1<0A2B2C2与SKIPIF1<0ABC位似,且位似比为2,并写出A2,B2,C2的坐标.【答案】(1)△A1B1C1为所求作,画图见详解;(2)A2(4,-2),B2(-2,-4),C2(8,-8),△A2B2C2为所求作,画图见详解.【分析】(1)利用关于x轴对称的点的坐标的特征,分别写出A、B、C三点关于x轴的对称点A1、B1、C1的坐标,然后分别描点,依次连接这三点即得符合要求的三角形;(2)根据位似图形在x轴下方,结合位似比2,把A、B、C的横纵坐标分别乘-2,即得到A2、B2、C2的坐标,描点得到△A2B2C2.【详解】解(1)∵SKIPIF1<0ABC三个顶点分别为A(﹣2,1)、B(1,2),C(﹣4,4).SKIPIF1<0ABC关于x轴对称的SKIPIF1<0A1B1C1,∴A(﹣2,1)、B(1,2),C(﹣4,4)关于x轴对称轴坐标为A1(-2,-1),B1(1,-2),C1(-4,-4),在平面直角坐标系中描出A1(-2,-1),B1(1,-2),C1(-4,-4),顺次连结A1B1,B1C1,C1A1,如下图,△A1B1C1所求作;(2)SKIPIF1<0A2B2C2与SKIPIF1<0ABC位似,且位似比为2,SKIPIF1<0ABC三个顶点分别为A(﹣2,1)、B(1,2),C(﹣4,4).A(﹣2,1)、B(1,2),C(﹣4,4)的位似点坐标为A2(-2×(-2),1×(-2))即(4,-2),B2(1×(-2),2×(-2))即(-2,-4),C2(-4×(-2),4×(-2))即(8,-8)在平面直角坐标系中描点A2(4,-2),B2(-2,-4),C2(8,-8),顺次连结A2B2,B2C2,C2A2,如下图,△A2B2C2为所求作19.(8分)35.(2022·江西)如图,四边形SKIPIF1<0为菱形,点E在SKIPIF1<0的延长线上,SKIPIF1<0.(1)求证:SKIPIF1<0;(2)当SKIPIF1<0时,求SKIPIF1<0的长.【答案】(1)见解析(2)AE=9【分析】(1)根据四边形ABCD是菱形,得出SKIPIF1<0,SKIPIF1<0,根据平行线的性质和等边对等角,结合SKIPIF1<0,得出SKIPIF1<0,即可证明结论;(2)根据SKIPIF1<0,得出SKIPIF1<0,代入数据进行计算,即可得出AE的值.【详解】(1)证明:∵四边形ABCD为菱形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0.20.(12分)(2022·浙江杭州)如图,在SKIPIF1<0ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF,已知四边形BFED是平行四边形,SKIPIF1<0.(1)若SKIPIF1<0,求线段AD的长.(2)若SKIPIF1<0的面积为1,求平行四边形BFED的面积.【答案】(1)2(2)6【分析】(1)利用平行四边形对边平行证明SKIPIF1<0,得到SKIPIF1<0即可求出;(2)利用平行条件证明SKIPIF1<0,分别求出SKIPIF1<0、SKIPIF1<0的相似比,通过相似三角形的面积比等于相似比的平方分别求出SKIPIF1<0、SKIPIF1<0,最后通过SKIPIF1<0求出.【详解】(1)∵四边形BFED是平行四边形,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)∵四边形BFED是平行四边形,∴SKIPIF1<0,SKIPIF1<0,DE=BF,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,DE=BF,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.21.(12分)38.(2022·湖北武汉)问题提出:如图(1),SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中点,延长SKIPIF1<0至点SKIPIF1<0,使SKIPIF1<0,延长SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,探究SKIPIF1<0的值.(1)先将问题特殊化.如图(2),当SKIPIF1<0时,直接写出SKIPIF1<0的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中点,SKIPIF1<0是边SKIPIF1<0上一点,SKIPIF1<0,延长SKIPIF1<0至点SKIPIF1<0,使SKIPIF1<0,延长SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0.直接写出SKIPIF1<0的值(用含SKIPIF1<0的式子表示).【答案】(1)[问题提出](1)SKIPIF1<0;(2)见解析(2)[问题拓展]SKIPIF1<0【分析】[问题探究](1)根据等边三角形的性质结合已知条件,求得SKIPIF1<0,SKIPIF1<0,根据含30度角的直角三角形的性质,可得SKIPIF1<0,即可求解;(2)取SKIPIF1<0的中点SKIPIF1<0,连接SKIPIF1<0.证明SKIPIF1<0,可得SKIPIF1<0,根据SKIPIF1<0,证明SKIPIF1<0,根据相似三角形的性质可得SKIPIF1<0,进而可得SKIPIF1<0;[问题拓展]方法同(2)证明SKIPIF1<0,得出,SKIPIF1<0,证明SKIPIF1<0,得到SKIPIF1<0,进而可得SKIPIF1<0SKIPIF1<0.【详解】(1)[问题探究]:(1)如图,SKIPIF1<0SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中点,SKIPIF1<0,SKIPIF1<0是等边三角形,S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论