武汉商贸职业学院《平面设计研发与制作一》2023-2024学年第一学期期末试卷_第1页
武汉商贸职业学院《平面设计研发与制作一》2023-2024学年第一学期期末试卷_第2页
武汉商贸职业学院《平面设计研发与制作一》2023-2024学年第一学期期末试卷_第3页
武汉商贸职业学院《平面设计研发与制作一》2023-2024学年第一学期期末试卷_第4页
武汉商贸职业学院《平面设计研发与制作一》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共8页武汉商贸职业学院《平面设计研发与制作一》

2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中,以下哪个任务通常需要对图像中的目标进行定位和分类?()A.图像生成B.目标检测C.图像超分辨率D.图像去噪2、计算机视觉中的语义理解旨在理解图像或视频中的高层语义信息。以下关于语义理解的说法,不正确的是()A.语义理解需要将图像中的物体、场景和事件等与先验知识进行关联和解释B.知识图谱可以为语义理解提供丰富的语义信息和关系C.语义理解在图像描述生成、问答系统等任务中发挥着重要作用D.语义理解已经达到了非常完美的程度,能够准确理解任何复杂的图像或视频内容3、在计算机视觉的图像去噪任务中,假设要去除一张受到严重噪声污染的图像中的噪声。以下关于图像去噪方法的描述,正确的是:()A.中值滤波能够有效地去除椒盐噪声,但会使图像变得模糊B.均值滤波在去除噪声的同时能够很好地保留图像的细节信息C.小波变换去噪方法计算复杂度高,不适合处理大规模图像D.所有的图像去噪方法都能够完全恢复出原始的无噪图像4、对于图像的边缘检测任务,假设要准确检测出图像中物体的边缘,同时抑制噪声的影响。以下哪种边缘检测算子可能表现更好?()A.Sobel算子B.Roberts算子C.Prewitt算子D.随机生成边缘检测结果5、图像分类是计算机视觉中的常见任务之一。对于图像分类模型的训练,以下说法错误的是()A.需要大量有标注的图像数据来学习不同类别的特征B.卷积神经网络(CNN)在图像分类任务中表现出色C.模型的训练过程是不断调整参数以最小化预测误差的过程D.图像分类模型一旦训练完成,就无法再对新的类别进行学习和分类6、图像分类是计算机视觉的基础任务之一。假设要对大量的自然风景图片进行分类,包括山脉、森林、海滩等不同类型,同时图片可能存在不同的拍摄角度、光照条件和季节变化。为了能够准确地对这些图片进行分类,以下哪种特征提取方法与分类算法的组合最为有效?()A.SIFT特征+支持向量机B.HOG特征+决策树C.卷积神经网络自动提取特征+深度学习分类器D.颜色直方图特征+朴素贝叶斯7、对于图像的语义理解任务,假设要理解一张图像所表达的场景和事件,例如判断一张图像是在举行婚礼还是在举办音乐会。图像中的信息可能比较隐晦和复杂。以下哪种方法可能有助于提高语义理解的准确性?()A.构建图像的语义图,分析物体之间的关系B.只关注图像中的主要物体,忽略背景信息C.对图像进行简单的分类,不进行深入的语义分析D.随机猜测图像的语义8、在计算机视觉中,目标检测是一项重要的任务。假设要开发一个能够在城市交通场景中检测车辆和行人的系统。以下关于目标检测算法的选择,哪一项是需要重点考虑的因素?()A.算法的检测速度,以满足实时性要求B.算法在小目标检测上的性能,因为车辆和行人在图像中可能较小C.算法的模型复杂度,越复杂的模型效果越好D.算法是否开源,开源的算法更易于使用9、在计算机视觉的场景理解任务中,需要理解整个图像的语义信息。假设要分析一张城市街道的图像中包含的物体和它们之间的关系,以下关于场景理解方法的描述,正确的是:()A.单独对图像中的每个物体进行识别和分类就能实现场景理解B.忽略图像中的上下文信息和空间布局对场景理解没有影响C.利用深度学习中的语义分割和图模型可以更好地理解场景的结构和语义关系D.场景理解只适用于简单的室内场景,对于复杂的户外场景无法处理10、在计算机视觉的图像检索任务中,需要根据用户提供的示例图像从大规模图像数据库中找到相似的图像。假设要构建一个高效的图像搜索引擎,能够快速准确地返回相关图像。以下哪种图像检索方法在处理大规模数据时性能更优?()A.基于内容的图像检索B.基于文本标注的图像检索C.基于哈希编码的图像检索D.基于深度学习特征的图像检索11、计算机视觉中的光流估计用于计算图像中像素的运动信息。假设我们要分析一个视频中物体的运动速度和方向,以下哪种光流估计算法在复杂场景下能够提供更准确的结果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法12、计算机视觉中的姿态估计任务是估计人体或物体在三维空间中的姿态。假设要估计一个人体模特的姿态。以下关于姿态估计的描述,哪一项是不正确的?()A.可以通过关键点检测和关节角度计算来估计人体姿态B.深度学习中的卷积神经网络可以直接预测人体姿态的参数C.姿态估计在虚拟现实和增强现实等应用中具有重要作用D.姿态估计的结果总是非常准确,不受人体遮挡和复杂动作的影响13、在计算机视觉中,以下哪种方法常用于图像的语义分割中的多尺度特征融合?()A.特征金字塔B.空洞卷积C.注意力机制D.以上都是14、计算机视觉中的表情识别旨在识别图像或视频中人物的表情。假设要在一个情感分析系统中准确识别表情,以下关于表情识别方法的描述,正确的是:()A.基于几何特征的表情识别方法对表情的细微变化不敏感,识别准确率低B.基于纹理特征的表情识别方法能够很好地捕捉表情的局部特征,但容易受到光照影响C.深度学习中的卷积神经网络在表情识别中能够学习到全局和局部的特征,但对大规模数据集依赖严重D.表情识别系统只适用于正面清晰的人脸表情,对于侧脸和遮挡的表情无法识别15、在计算机视觉的图像配准任务中,假设要将两张不同视角拍摄的同一物体的图像进行对齐。以下关于图像配准方法的描述,正确的是:()A.基于特征点的配准方法对图像的旋转、缩放和平移具有不变性,但特征点的提取容易出错B.基于灰度的配准方法计算简单,但对光照变化和噪声敏感C.深度学习中的自监督学习方法在图像配准中无法学习到有效的特征表示D.图像配准的精度只取决于配准算法的选择,与图像的质量和特征无关16、在计算机视觉的视频压缩中,为了在保证视觉质量的同时减少数据量,以下哪种技术可能被广泛应用?()A.运动估计和补偿B.图像分割C.特征点检测D.边缘检测17、在计算机视觉的图像配准任务中,假设要将两张拍摄角度和时间不同的同一物体的图像进行精确对齐。这两张图像可能存在缩放、旋转和平移等差异。以下哪种配准方法可能更适合处理这种情况?()A.基于特征点匹配的方法,如SIFT特征B.直接将两张图像叠加,不进行任何配准操作C.基于图像灰度值的配准方法,计算灰度差异D.随机选择图像中的点进行匹配18、当处理低光照条件下拍摄的图像时,为了增强图像的亮度和对比度,同时减少噪声,以下哪种图像处理方法可能更合适?()A.直方图均衡化B.伽马校正C.简单地增加图像的整体亮度值D.不进行任何处理,保留低光照效果19、计算机视觉中的人脸识别技术应用广泛。假设要在一个门禁系统中实现准确的人脸识别,以下关于人脸识别方法的描述,正确的是:()A.基于几何特征的人脸识别方法对姿态和光照变化具有很强的鲁棒性B.基于模板匹配的方法能够处理大规模的人脸数据库,并且识别速度快C.深度学习中的卷积神经网络在人脸识别中能够学习到更具判别性的特征,但容易受到数据偏差的影响D.人脸识别系统一旦训练完成,就不需要更新和优化,能够一直保持高准确率20、在计算机视觉的图像修复任务中,假设要修复一张有部分缺失的图像。以下关于图像修复方法的描述,正确的是:()A.基于扩散的图像修复方法能够自然地填充缺失区域,但修复速度慢B.基于样本的图像修复方法可以快速生成修复结果,但容易出现重复纹理C.深度学习中的生成对抗网络(GAN)在图像修复中无法保证修复内容与周围区域的一致性D.所有的图像修复方法都能够完美地恢复出图像缺失部分的真实内容21、在计算机视觉的实际应用中,模型的实时性是一个重要的考虑因素。以下关于实时性的描述,不正确的是()A.对于一些需要实时响应的应用,如自动驾驶和工业检测,模型的处理速度至关重要B.模型的复杂度、计算资源和算法效率都会影响实时性C.可以通过模型压缩、硬件加速和优化算法等方法来提高模型的实时性D.实时性只与模型本身有关,与硬件设备和系统架构无关22、在计算机视觉的目标跟踪任务中,跟踪一个移动的物体具有挑战性。假设要在一段视频中跟踪一个快速移动的车辆,以下关于目标跟踪算法的描述,正确的是:()A.基于卡尔曼滤波的目标跟踪算法在处理非线性运动时效果最佳B.深度学习中的相关滤波方法能够快速适应目标的外观变化和遮挡情况C.目标跟踪算法不需要考虑目标的尺度变化和旋转D.目标跟踪的准确性只取决于初始帧中目标的定位精度23、计算机视觉中的图像配准是将不同时间、不同视角或不同传感器获取的图像进行匹配和对齐。以下关于图像配准的叙述,不正确的是()A.图像配准需要找到图像之间的对应点或特征,然后进行变换和对齐B.图像配准在医学图像分析、遥感图像处理和三维重建等领域有着广泛的应用C.图像配准的精度和鲁棒性受到图像质量、噪声和几何变形等因素的影响D.图像配准是一个简单的过程,不需要复杂的算法和优化24、计算机视觉在虚拟现实(VR)和增强现实(AR)中有重要作用。假设要在VR环境中实现真实感的物体交互,以下哪种技术可能对准确感知物体的位置和姿态至关重要?()A.立体视觉B.光场成像C.结构光D.运动捕捉25、在计算机视觉的姿态估计任务中,需要确定物体在三维空间中的方向和位置。假设我们要估计一个机器人手臂的姿态,以下哪种技术通常被用于获取准确的姿态信息?()A.基于视觉标记的姿态估计B.基于深度学习的姿态估计C.基于几何约束的姿态估计D.基于惯性测量单元(IMU)的姿态估计26、在医学图像分析中,计算机视觉技术有助于疾病的诊断和治疗。假设医生需要对一组肺部CT图像进行分析,以检测是否存在肿瘤。以下关于医学图像分析中的计算机视觉的描述,哪一项是不准确的?()A.计算机视觉算法可以自动检测和定位肺部肿瘤,提高诊断的效率和准确性B.能够对图像进行增强和预处理,突出病变区域,便于医生观察和判断C.由于医学图像的复杂性和个体差异,计算机视觉的结果总是完全准确无误的D.可以通过大量标注的医学图像数据进行训练,学习正常和异常的图像特征27、计算机视觉中的姿态估计任务,确定物体在空间中的位置和方向。假设要估计一个机器人手臂的姿态,以下关于姿态估计方法的描述,正确的是:()A.基于几何模型的姿态估计方法在复杂环境中总是能够准确估计姿态B.深度学习中的端到端姿态估计网络不需要对物体的结构和运动有先验了解C.姿态估计的结果不受相机参数和拍摄角度的影响D.结合多种传感器数据和深度学习的方法可以提高姿态估计的精度和鲁棒性28、在计算机视觉中,特征提取是非常关键的一步。假设我们要从图像中提取有意义的特征,用于后续的处理和分析,以下关于特征提取方法的描述,哪一项是不正确的?()A.SIFT(尺度不变特征变换)和SURF(加速稳健特征)是常用的局部特征描述子,对图像的旋转、缩放和光照变化具有一定的不变性B.HOG(方向梯度直方图)特征通过计算图像局部区域的梯度方向分布来描述图像,常用于行人检测C.深度学习中的自动特征提取,例如通过卷积神经网络学习到的特征,比手工设计的特征更具有代表性和判别力D.特征提取的结果对后续的图像处理任务影响不大,不同的特征提取方法可以得到相似的处理效果29、图像分类是计算机视觉的常见任务之一。假设要对大量的自然风景图片进行分类,如山脉、森林、海滩等。在进行图像分类时,以下关于数据增强的方法,哪一项可能不太有效?()A.对图像进行随机裁剪和旋转,增加数据的多样性B.改变图像的色彩和对比度,模拟不同的拍摄条件C.直接复制原图像,增加数据量D.给图像添加随机噪声,增强模型的鲁棒性30、计算机视觉在安防监控领域有广泛应用。假设要通过监控摄像头实时检测人群中的异常行为,以下关于实时性和准确性的平衡,哪一项是最为关键的?()A.优先保证实时性,即使准确性略有降低B.优先保证准确性,允许一定的延迟C.不考虑实时性和准确性,只要能检测出异常行为即可D.完全无法平衡实时性和准确性,只能根据具体情况选择其一二、应用题(本大题共5个小题,共25分)1、(本题5分)使用目标检测技术,从气象卫星图像中检测出雷电活动区域。2、(本题5分)开发一个能够识别不同种类鼬科动物的程序。3、(本题5分)利用目标检测算法,在天文图像中检测星系。4、(本题5分)利用图像增强技术,改善雾天交通监控图像的可视性。5、(本题5分)基于计算机视觉的智能工厂物料搬运系统,实现物料的自动识别和搬运。三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论